Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-06T22:51:08.257Z Has data issue: false hasContentIssue false

Impurity-Induced Changes in Interfacial Strength and Their Role in Creep Fracture

Published online by Cambridge University Press:  26 February 2011

E.P. George
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, Oak Ridge, TN 37831–6093
D.P. Pope
Affiliation:
University of Pennsylvania, Department of Materials Science and Engineering, Philadelphia, PA 19104–6272
Get access

Abstract

Creep cavity nucleation at second phase particles in iron and steel is examined in the light of recent theoretical and experimental results. Theoretical considerations show it to be extremely unlikely that thermal nucleation will occur at Fe3C, FeO or A1203 particles, or that athermal nucleation will take place at Fe3C particles. Consistent with this, it is experimentally found that carbides and oxides almost never nucleate cavities in iron and steel, as long as harmful impurities like sulfur are not present. In the presence of segregated impurities like sulfur, oxides do nucleate cavities, but there is insufficient data to determine whether this is because the impurities make thermal or athermal nucleation easier. Finally, sulfides are thought to be nonwetting in iron and steel. As a result, there should be no barrier to thermal nucleation at sulfides, and experiments show that sulfides do nucleate cavities with great ease in iron and steel.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Riedel, Hermann, “Fracture at High Temperatures,” Springer-Verlag, Berlin, 79 (1987).CrossRefGoogle Scholar
2. Raj, R. and Ashby, M. F., Acta Metall. 23, 653 (1975).Google Scholar
3. Cane, B. J. and Greenwood, G. W., Metal Sci. 9, 55 (1975).CrossRefGoogle Scholar
4. Argon, A. S., Chen, I.-W. and Lau, C. W., in “Creep Fatigue Environment Interactions,” eds. Pelloux, R. M. and Stoloff, N. S., The Metallurgical Society of AIME, Warrendale, PA, 46 (1980).Google Scholar
5. Trinkaus, H., Phys. Rev. B27, 7372 (1983).Google Scholar
6. Chen, I.-W. and Yoo, M. H., Acta Metall. 32, 1499 (1984).Google Scholar
7. Raj, Rishi, Acta Metall. 26, 995 (1978).CrossRefGoogle Scholar
8. Chang, H. C. and Grant, N. J., Trans. AIME (J. Metals). 197 1175 (1953).Google Scholar
9. Argon, A. S. and Im, J., Metall. Trans. 6A, 839 (1975).CrossRefGoogle Scholar
10. Restaino, P. A. and McMahon, C. J. Jr., Trans. ASM. 60, 699 (1967).Google Scholar
11. Wilkinson, D. S., Abiko, K., Thyagarajan, N. and Pope, D. P., Metall. Trans. 11A, 1827 (1980).Google Scholar
12. Takasugi, T. and Pope, D.P., Metall. Trans. 13A, 1471 (1982).Google Scholar
13. Chen, S.-H., Takasugi, T. and Pope, D. P., Metall. Trans. 14A, 571 (1983).Google Scholar
14. Pope, D. P., in “Embrittlement of Engineering Alloys,” eds. Briant, C. L. and Banerji, S. K., Treatise on Materials Science and Technology, Vol. 25, Academic Press, New York, 125 (1983).Google Scholar
15. Chen, S.-H. and Pope, D. P., in “Proc. Second Int. Conf. Creep and Fracture of Engineering Materials,” eds. Wilshire, B. and Owen, D. R. J., Pineridge Press, Swansea, 661 (1983).Google Scholar
16. George, E. P., Chen, S.-H. and Pope, D. P., Scripts Metall. 20, 1775 (1986).CrossRefGoogle Scholar
17. Li, P. L., George, E. P. and Pope, D. P., Scripta Metall. 20, 1785 (1986).Google Scholar
18. George, E. P., Li, P. L. and Pope, D. P., Acta Metall. 35, 2471 (1987).Google Scholar
19. George, E. P., Li, P. L. and Pope, D. P., Acta Metall. 35, 2487 (1987).CrossRefGoogle Scholar
20. Li, P. L., George, E. P. and Pope, D. P., Metall. Trans. 19A, 887 (1988).Google Scholar
21. Nix, W. D. and Gibeling, J. C., in “Flow and Fracture at Elevated Temperatures,” ed. Raj, Rishi, American Society for Metals, Metals Park, Ohio, 1 (1985).Google Scholar
22. Cane, B. J., Metals Sci. 10, 29 (1976); 13, 287 (1979).Google Scholar
23. Chen, I.-W. and Argon, A. S., Acta Metall. 29, 1321 (1981).Google Scholar
24. Middleton, C. J., Metals Sci. 15, 154 (1981).CrossRefGoogle Scholar
25. McMahon, C. J. Jr., in “Grain Boundaries in Engineering Materials,” eds. Walter, J. L., Westbrook, J. H. and Woodford, D. A., Claitor's Publishing, Baton Rouge, LA, (1974).Google Scholar
26. Pichard, C., Rien, J. and Goux, C., Metall. Trans. 7A, 1811 (1976).Google Scholar
27. Hondros, E. D., Proc. Roy. Soc. A286, 479 (1965).Google Scholar
28. Hondros, E. D., Acta Metall. 16, 1377 (1968).Google Scholar
29. Mortimer, D. A. and Nicholas, M., J. Mater. Sci. 8, 640 (1973).Google Scholar
30. Martin, A. G. and Sellars, C. M., Metallography. 3, 259 (1970).Google Scholar
31. Kramer, J. J., Pound, G. M. and Mehl, R. F., Acta Mietall. 6, 763 (1958).Google Scholar
32. Thompson, F. C., Trans. Faraday Soc. 17, 391 (1922).Google Scholar
33. Kingery, W.D., J. Amer. Cer. Soc. 37, 42 (1954).Google Scholar
34. Pilliar, R. M. and Nutting, J., Phil. Mag. 16, 181 (1967).Google Scholar