Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T20:16:35.301Z Has data issue: false hasContentIssue false

Impurity Content and Defect Density in 42 a-Si:H Films

Published online by Cambridge University Press:  01 January 1993

Masami Nakata
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
C.W. Magee
Affiliation:
Evans East, Plainsboro, NJ 08536
T.M. Peterson
Affiliation:
Electric Power Research Institute, Palo Alto, CA 94303
H.R Park
Affiliation:
Mokpo National University, Muan, Korea
Get access

Abstract

In an earlier study of 37 a-Si:H films we identified positive correlations between the saturated light-induced defect density Nsat, the hydrogen content CH measured by IR absorption, and the optical gap. Impurities also have been implicated in the production of metastable defects. Yet no conclusive evidence has been produced that non-dopant impurities cause defects. This situation led us to analyze our samples for impurity content. Our present 42 samples were made in six laboratories by ten combinations of deposition technique. The concentrations of H, B, C, N, O, F, Na, Cr, and Ge were determined by secondary ion mass spectroscopy. Na, Cr, or Ge were not detected. The content of C, N and O varies by a factor ∼1,000 and depends on deposition system and source gas. We report a comprehensive evaluation of our data with emphasis on their correlation with optoelectronic properties. We find the annealed state defect density Nann, and the saturated light-induced defect density Nsat surprisingly independent of impurity content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Carlson, D.E., Technical Digest of the 1977 International Electron Devices Meeting, p-214 (1977).Google Scholar
2 Magee, C. and Carlson, D.E., Solar Cells 2, 365 (1980).Google Scholar
3 Carlson, D.E., in Semiconductors and Semimetals Vol.297, Hydrogenated Amorphous Silicon, ed. by Pankove, J.I., Part D, pl3. Academic Press, New York Google Scholar
4 Delahoy, A.D. and Griffith, R.W., Proc.l5th IEEE Photovaltaic Specialists Conf., 704 (1981).Google Scholar
5 Knight, J.C., Street, R.A., and Lucovsky, G., J.Non-Cryst.Solids 35&36, 279 (1980).Google Scholar
6 Carlson, D.E., J.Vac.Sci.Technol. 20, 290 (1982).Google Scholar
7 Unold, T. and Cohen, J.D., J.Non-Cryst.Solids 114, 603 (1989).Google Scholar
8 Skumanich, A. and Amer, N.M., Phys.Rev. B 37, 8465 (1988).Google Scholar
9 Stutzmann, M., Jackson, W.B., and Tsai, C.C., Phys.Rev. B 32, 23 (1985).Google Scholar
10 Kocka, J., Stika, O., and Klima, O., Appl.Phys.Lett. 62, 1082 (1993).Google Scholar
11 Ohnishi, M., Tsuda, S., Takahama, T., Isomura, M., Nakashima, Y., Nakamura, N., Nakano, S., Yazaki, T., Kuwano, Y., Jpn.J.Appl.Phys. 26, 1408 (1987).Google Scholar
12 Michelson, C.E., and Cohen, J.D., Phys.Rev. B 41, 1529 (1990).Google Scholar
13 Morimoto, A., Matsumoto, M., Kumeda, M., and Shimizu, T., Jpn.J.Appl.Phys. 29, L1747 (1990).Google Scholar
14 Shimizu, T., Matsumoto, M., Yoshita, M., Iwami, M.. Motimoto, A., and Kumeda, M., J.Non-Cryst.Solids 137&138, 391 (1991).Google Scholar
15 Nakamura, N., Takahama, T., Isomura, M., Nishikuni, M., Yoshida, K., Tsuda, S., Nakano, S., Ohnishi, M., and Kuwano, Y., Jpn.J.Appl.Phys. 28, 1762 (1989).Google Scholar
16 Morimoto, A., Matsumoto, M., Yoshita, M., Kumeda, M., and Shimizu, T., Appl.Phys.Lett. 59, 2130 (1991).Google Scholar
17 Kurata, H., Hirose, M., and Osaka, Y., Jpn.J.Appl.Phys. 20, L811 (1980).Google Scholar
18 Ishii, N., Kumeda, M., and Shimizu, T., Jpn.J.Appl.Phys. 24, L244 (1985).Google Scholar
19 Redfield, D. and Bube, R.H., Phys.Rev.Lett. 65, 464 (1990).Google Scholar
20 Yamazaki, S., Shiraishi, T., and Adler, D., J.Non-Cryst.Solids 68, 167 (1984).Google Scholar
21 Crandall, R.S., Carlson, D.E., Catalano, A., and Weakliem, H.A., Appl.Phys.Lett. 44, 200 (1984).Google Scholar
22 Crandall, R.S., Phys.Rev. B 24, 7457 (1981).Google Scholar
23 Tsai, C.C., Knight, J.C., Lujan, R.A., Wacker, B., Stafford, B.L., and Thompson, M.J., J. Non-Cryst.Solids 59&60, 731 (1983).Google Scholar
24 Redfield, David and Bube, Richard H., AIP Conference Proceedings 234 on“Amorphous Silicon Materials and Solar Cells”, 66 (1991).Google Scholar
25Standard annealing procedure adopted by SMART collaborators.Google Scholar
26 Park, H.R., Jiu, J.Z., Cabarrocas, P.Roca i, Maruyama, A., Isomura, M., and Wagner, S., Appl.Phys.Lett. 57, 1440 (1990).Google Scholar
27 Park, H.R., Liu, J.Z., and Wagner, S., Appl.Phys.Lett. 55, 2658 (1989).Google Scholar
28 Isomura, M. and Wagner, S., J.Non-Cryst.Solids 141, 204 (1992).Google Scholar
29 Matsuda, A., private communication.Google Scholar