Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T14:08:24.886Z Has data issue: false hasContentIssue false

Improving Wettability of PoIyMethylMetiiAcrylate by Ar+ ion Irradiation in Oxygen Environment

Published online by Cambridge University Press:  21 February 2011

Seok-Keun Koh
Affiliation:
Ceramics Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
Won-Kook Choi
Affiliation:
Ceramics Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
Jun-Sik Cho
Affiliation:
Ceramics Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
Seok-Kyun Song
Affiliation:
Ceramics Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
Hyung-Jin Jung
Affiliation:
Ceramics Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
Get access

Abstract

Ion irradiation has been carried out to improve wettability of PMMA to water. The polymer was irradiated by argon and oxygen ions, and amount of ions was changed from 1014 ArVcm2 to 5xl016Ar+/cm2. Ions energies were varied from 0.5 keV to 1.5 keV, and oxygen gas was flowed from 0 seem to 6 scan near the polymer surface during ion irradiation. Wetting angle was reduced from 68 degree to 49 degree with increasing Ar+ ion irradiation, to 43 degree with Ch+ ion irradiation, and dropped to 8 degree with Ar+ ion irradiation with flowing 4 seem oxygen gas near the polymer surface. Recovery of wettability in dry air condition, and maintenance of it in dilute HC1 solution were explained in a view of formation of hydrophilic groups due to a reaction between irradiated polymer chain by energetic ion irradiation and flowing oxygen near the surface. Reactions among polymer matrix, energetic ions and oxygen gas to form hydrophilic group by energetic ions were discussed in terms of a two-step reaction, in which the first step is the creation of an unstable polymer chain by the ion irradiation and the second step is a reaction between the radicals and the oxygen gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bachman, B.J. and Vasile, M.J.,J.Vac.Sci.Technol. A7(4), 2709(1989).Google Scholar
2 Schalek, R., Fflavacek, M. and Giummon, D. S., Mat. Res. Soc. Symp. Proc. 236,335 (1992).Google Scholar
3 Wintersgill, M. C., Nuclear Inst. & Meth. Bl, 595 (1984).Google Scholar
4 Livi, R. P., Nuclear Inst. & Meth. B10/11,545 (1985).Google Scholar
5 Jacobson, S., Jonsson, B. and Sundqvist, B., Thin Solid Films, 107, 89 (1983).Google Scholar
6 Wie, C. R., Shi, C. R., Mendenhall, M. H., Livi, R. P., Vreeland, T. Jr., and Tombrello, T. A., Nuclear Inst. & Meth. B9,20(1985).Google Scholar
7 Tombrello, T. A., Nuclear fast. & Meth. 218, 679 (1983).Google Scholar
8 Griffith, J. E., Qiu, Y. and Tombrello, T. A., Nuclear fast. & Meth. 198,607 (1982).Google Scholar
9 Chou, N. J., Dong, D. W., Kim, J. and Liu, A. C., J. Eectrochem Soc.Solid S. Sci. Tech. 131(10), 2335 (1984).Google Scholar
10 Flitsch, R. and Shih, D. Y., J. Vac. Sci. Technol. A8(3), 2376 (1990).Google Scholar
11 Mitchell, I. V., Williams, J. S., Smith, P. and Elliman, R. G., Appi. Phys. Lett. 44(2), 193 (1984).Google Scholar
12 Keflock, A. J., Nyberg, G. L. and Williams, J. S., Vacuum, 35(12), 625 (1985).Google Scholar
13 Forrest, S. R., Kaplan, M. L., Schmidt, P. H., Venkatesan, T. and Lovinger, A. J., Appi. Phys. Lett. 41(8), 708(1982).Google Scholar
14 Venkatesan, T., Dynes, R. C., Wilkens, B., White, A. E., Gibson, J. M. and Hamm, R., Nuclear fast & Meth. Bl, 599 (1984).Google Scholar
15 Puglisi, O., Licciardello, A., Calcagno, L. and Foti, G., Nuclear fast & Meth. B19/20,865 (1987).Google Scholar
16 Wang, G. H., Li, X. J., Zhu, Y. Z., Liu, Q.S., Hu, N. X., Gu, X. S. and Wang, Q., Nuclear fast & Meth. B7/8,497 (1985).Google Scholar
17 Wang, G. H., Pan, G. Q. and Dou, L., Nuclear fast. & Meth. B27,410 (1987).Google Scholar
18 Mazzoldi, P. and Arnold, G. W., Ion beam Modifcation of Insulators(Elsevier Science, 1987), p. 585.Google Scholar
19 facona, F., Garilli, M., Marietta, G., Puglisi, O. and Pignataro, S., J. Mater. Res. 6(4), 861 (1991).Google Scholar
20 Baglin, J. E. E., Schrott, A. G., Thompson, R. D., Tu, K. N. and Segmuller, A., Nuclear fast & Meth. B19/20, 782 (1987).Google Scholar
21 Baglin, J. E. E., Nuclear fast. & Meth. B65,119 (1992).Google Scholar
22 Gerenser, L. J., J. Vac. Sci. Technol. A6(5), 2897 (1989).Google Scholar
23 Ho, P. S., Hahn, P. O., Bartha, J. W., Rublofi, G. W. LeGoues, F. K. and Silverman, B. D., J. Vac. Sci. Technol. A3(3), 739 (1985).Google Scholar
24 Koh, S.K.,Pae, K.D. and Caracciolo, R., Polymer Eng.& Sci., 32(8), 559(1992).Google Scholar
25 Koh, S.K., Choi, W.K., Song, S.K., Jung, H.-J., and Han, S.N., J. Kor. Appi. Phys. (to be published)Google Scholar
26 Suzuki, Y., Kusakabe, M., Iwaki, M., Suzki, l., Nuclear fast.& Meth.. B32,120(1988).Google Scholar
27 Tonia, L., Cakagno, L., Foti, A.M., Nuclear fast& Meth. B32,142(1988).Google Scholar
28 Koh, S.K., Choi, W.K., Song, S.K., Jung, H.-J., and Han, S.N., J. Mat Res. (to be published)Google Scholar