Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T09:14:20.105Z Has data issue: false hasContentIssue false

Improvement of the Electrical Properties of YMnO3 Thin Films in A Metal/Ferroelectric/Si Structure

Published online by Cambridge University Press:  10 February 2011

Woo-Chul Yi
Affiliation:
Seoul National Univ., Dept. of Physics, Seoul, Korea
Chang-Su Seo
Affiliation:
Seoul National Univ., Dept. of Physics, Seoul, Korea
Sook-Il Kwun
Affiliation:
Seoul National Univ., Dept. of Physics, Seoul, Korea
Jong-Gul Yoon
Affiliation:
Univ. of Suwon, Dept. of Physics, Kyung-gi-do, Korea
Get access

Abstract

Highly (0001)-oriented films of YMnO3 were grown on n-type Si(100) substrates by a chemical solution deposition with a modified precursor solution. Spin-coated films were crystallized by rapid thermal annealing at 650 °C, and showed improved structural and electrical properties. Capacitance-voltage (C-V) measurements at 1 MHz showed a counterclockwise hysteresis, with a memory window of 1.9 V at 9 V, due to ferroelectric polarization, and a dielectric constant of 25. The effects of mobile ionic charge and effective interface charge in the C-V measurements were found to be small by investigating the bias sweep rate dependence and flat-band voltage shift, respectively. The interface trap density near the Si midgap was obtained to be about 1.3 × 1011 cm−2eV−1 through conductance measurements. Current-voltage characteristics showed a leakage current density of 16 nA/cm2 at 3 V. An asymmetric polarization-voltage (P-V) hysteresis curve became symmetric one with a remanent polarization value of 0.1 μ C/cm2 under He-Ne laser illumination. The depolarization field in the ferroelectric film and charge compensation by the light-generated minority carriers may be responsible for the observed P-V characteristics. The low temperature fabrication of this YMnO3 film showed good structural and electrical properties for application to nonvolatile ferroelectric memory devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yi, W.-C., Choe, J.-S., Moon, C.-R., Kwun, S.-I., and Yoon, J.-G., Appl. Phys. Lett. 73, 903 (1998).10.1063/1.122443Google Scholar
2. Song, Y. J., Zhu, Y., and Desu, S. B., Appl. Phys. Lett. 72, 2686 (1998).10.1063/1.121099Google Scholar
3. Brinks, H. W., Fjellvåg, H., and Kjekshus, A., J. Solid State Chem. 129, 334 (1997).10.1006/jssc.1996.7261Google Scholar
4. Saitoh, T., Bocquet, A. E., Mizokawa, T., Namatame, H., Fujimori, A., Abbate, M., Takeda, Y., and Takano, M., Phys. Rev. B 51, 13 942 (1995).10.1103/PhysRevB.51.13942Google Scholar
5. Jovalekić, Č., Pavlović, M., and Atanasoska, L., Appl. Phys. Lett. 72, 1051 (1998).10.1063/1.120961Google Scholar
6. Yakel, H. L., Koehler, W. C., Bertaut, E. F., and Forrat, E. F., Acta Cryst. 16 957 (1963).10.1107/S0365110X63002589Google Scholar
7. Qiao, J., Ajimine, E. M., Patel, P. P., Giese, G. L., Yang, C. Y., and Fork, D. K., Appl. Phys. Lett. 61 3184 (1992).10.1063/1.107953Google Scholar
8. Yoshimura, T., Fujimura, N., and Ito, T., Appl. Phys. Lett. 73, 414 (1998).10.1063/1.122269Google Scholar
9. Tamura, H., Sawaguchi, E., and Kikuchi, A., Jpn. J. Appl. Phys. 4, 621 (1965).10.1143/JJAP.4.621Google Scholar
10. Alexe, M., Appl. Phys. Lett. 72, 2283 (1998).10.1063/1.121337Google Scholar
11. Miller, S. L. and McWhorter, P. J., J. Appl. Phys. 72, 5999 (1992).10.1063/1.351910Google Scholar
12. Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, 1982, pp. 104, 164, and 325.Google Scholar
13. Wurfel, P. and Batra, I. P., Phys. Rev. B 8, 5126 (1973).10.1103/PhysRevB.8.5126Google Scholar