Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T11:31:28.320Z Has data issue: false hasContentIssue false

Improvement of Surface Crystalline Quality of an Epitaxial (100)ZrN Film as a Bottom Electrode Diffusion Barrier for Ferroelectric Capacitors

Published online by Cambridge University Press:  17 March 2011

Susumu Horita
Affiliation:
Japan Advanced Institute of Science and Technology, Ishikawa, JAPAN
Sadayoshi Horii
Affiliation:
Delegated from Kokusai Electric Co., Ltd, Toyama, JAPAN
Takeo Toda
Affiliation:
Japan Advanced Institute of Science and Technology, Ishikawa, JAPAN
Get access

Abstract

We fabricated the double epitaxial layers of Ir on barrier metal ZrN for Pb(ZrxTi1−x)O3 (PZT), using reactive sputtering. In order to remove the surface oxide layer of the ZrN film prior to depositing the Ir film, we used a new treatment method, in which the ZrN film is dipped into a 0.5% buffered HF solution for less than 30 seconds and then immediately dipped into a hydrazine (N2H4) monohydrate solution for 60 seconds. Also, in order to suppress the generation of twin boundaries and to improve crystalline quality, the ZrN film is deposited using a two-step method, which consists of an initial high temperature deposition step at 850s°C followed by a lower temperature step at 600°C. On the ZrN film prepared by these methods, we can obtain a mainly (110)-oriented epitaxial Ir film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. -Elbaum, L. K., Wittmer, M., Ting, C. -Y. and Cuomo, J. J., Thin Solid Films, 104, 81 (1983).Google Scholar
2. Horii, S., Yokoyama, S. and Horita, S. in Ferroelectric Thin Films VIII, edited by Schwartz, R. W., Mclntyre, P. C., Miyasaka, Y., Summerfelt, S. R., Wouters, D., (Mater. Res. Soc. Proc. 596, Pittsburgh, PA, 2000) pp.8590.Google Scholar
3. Horii, S. and Horita, S. in Proc. 2000 12th IEEE Inter. Symp. Appl. Ferroelectrics, edited by Streiffer, S. K., Gibbons, B. J. and Tsurumi, T., (2. Piscataway, NJ, 2001) pp.607610.Google Scholar
4. Berkovits, V. L., Ulint, V. P., L'Vova, T. V. and Izumi, A., in Proc. 7th Int. Symp. Nanostructures: Physics & Technology, (Ioffe Institute, St. Petersburg, Russia,1999) pp.513515.Google Scholar
5. Vogt, K. W., Naugher, L. A. and Kohl, P. A., Thin Solid Films, 256, 106 (1995).Google Scholar
6. Horii, S., Toda, T. and Horita, S., Jpn. J. Appl. Phys. 40, L976 (2001).Google Scholar
7. Hou, S. Y., Kwo, J., Watts, R. K., Cheng, J. -Y., Cava, R. J., Pec, W. F. Jr., and Fork, D.K., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R. and Shiosaki, T., (Mater. Res. Soc. Proc. 361, Pittsburgh, PA, 1995) pp.99104.Google Scholar
8. Jia, Q. X., Song, S.G., Wu, X. D., Cho, J.H., Foltyn, S. R., Findikoglu, A. T. and Smith, J. L., Appl. Phys. Lett. 68, 1069 (1996).Google Scholar