Skip to main content Accessibility help

Improvement in the Thermoelectric Figure-of-Merit of TAGS-85 by Rare Earth Additions

  • B. A. Cook (a1) (a2), J. L. Harringa (a1), M. Besser (a1) and R. Venkatasubramanian (a2)


TAGS-85 is a well-known thermoelectric material based on germanium monotelluride that exhibits a second-order displacive transformation from a high-temperature cubic to a low-temperature rhombohedral polymorph. Recent efforts to improve the thermoelectric figure-of-merit through the addition of small amounts of the rare earth elements Ce and Yb have demonstrated a 25 percent increase in ZT at 700K in materials obtained by solidification from the melt. Preliminary analysis by x-ray diffraction of the chemically-modified alloy suggests a partial stabilization of the high-temperature cubic polymorph. 125Te NMR studies confirm the incorporation of rare earth cations into the GeTe-based lattice. Solid state synthesis has been successfully applied to the processing of rare-earth-doped TAGS-85 and has resulted in a further increase in ZT beyond the levels initially observed in melt-solidified materials. This is believed to be due to improved homogeneity in the distribution of the lanthanide.



Hide All
[1] Rhyee, J.-S., Lee, K. H., Lee, S. M., Cho, E., Il Kim, S., Lee, E., Kwon, Y. S., Shim, J. H., and Kotliar, G., Nature 459, 965 (2009).
[2] Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G., Science 303, 818 (2004).
[3] Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G., Ren, Z., Science 320, 634 (2008).
[4] Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G. J., Science 321, 554 (2008).
[5] Rosi, F. D., Dismukes, J. P., and Hockings, E. F., Electrical Engineering, 79 (1960) 450459.
[6] Skrabek, E. and Trimmer, D., “Thermoelectric Device Including and Alloy of GeTe and AgSbTe2 as the p-type Element,” U. S. Patent no. 3,945,855, issued March 23, 1976.
[7] Wood, C., Rep. Prog. Phys. 51 (1988), 459540.
[8] Chasmar, R. P. and Stratton, R., J. Electron. Control, 7 (1959) 52.
[9] Cook, B. A., Kramer, M. J., Wei, X., Harringa, J. L., Levin, E. M., J. Appl. Phys. 2007,101, 053715-1–053715–6.
[10] Cook, B. A., Wang, X., Harringa, J. L., Kramer, M. J., Mater, J.. Sci., 42 (2007) 7643.
[11] Pabi, S. K. and Murthy, B. S., Bull. Mater. Sci., 19 (1996) 939.
[12] Suryanarayana, C., Prog. Mater. Sci., 46 (2001) 1184.
[13] Results to be published in a subsequent communication.
[14] Levin, E. M., Cook, B. A., Harringa, J. L., Bud’ko, S. L., Venkatasubramanian, R, and Schmidt-Rohr, K., Adv. Funct. Mater., 21 (2011) 441.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed