Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T22:03:08.710Z Has data issue: false hasContentIssue false

Improved Electrical Properties of Ga2O3:Sn/CIGS Hetero-Junction Photoconductor

Published online by Cambridge University Press:  27 January 2014

Kenji Kikuchi
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157–8510, Japan Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama, 223–8522, Japan
Shigeyuki Imura
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157–8510, Japan
Kazunori Miyakawa
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157–8510, Japan
Hiroshi Ohtake
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157–8510, Japan
Misao Kubota
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157–8510, Japan
Eiji Ohta
Affiliation:
Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama, 223–8522, Japan
Get access

Abstract

We examined the potential application of CuIn1-xGaxSe1-ySy (CIGS) film for visible light image sensors. CIGS chalcopyrite semiconductors, which are representative of high efficiency thin film solar cells, have both a high absorption coefficient and high quantum efficiency. However, their dark current is too high for image sensors. In this study, we applied gallium oxide (Ga2O3) as a hole-blocking layer for CIGS thin film to reduce the dark current. The dark current of this hetero-junction was 10-9 A/cm2 at less than 7 V. Moreover, an avalanche multiplication phenomenon was observed at an applied voltage of over 8 V. However, this structure had sensitivity only in the ultraviolet light region due to the much lower carrier density of the Ga2O3 layer. We therefore used a tin-doped Ga2O3 (Ga2O3:Sn) layer deposited by pulsed laser deposition (PLD) for the n-type layer to increase the carrier density. The sensitivity of the visible region was observed in the Ga2O3:Sn/CIGS hetero-junction. We also investigated the influence of the laser frequency of the PLD on the transmittance of Ga2O3:Sn and the quantum efficiency of this hetero-junction. Ga2O3:Sn film deposited at a 0.1-Hz laser repetition rate had higher transmittance than at a 10-Hz repetition rate. The Ga2O3:Sn/CIGS hetero-junction also had a higher quantum efficiency with the lower rate (50%) than with the higher rate (30%).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ramanathanm, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., and Duda, A., Prog. Photovolt: Res. Appl. 11, 225 (2003).CrossRefGoogle Scholar
Nakada, T., Furumi, K., and Kunioka, A., IEEE Transactions of Electron Devices 46(10), 2093, (1999).CrossRefGoogle Scholar
Karg, F., Energy Procedia, Vol. 15, 275 (2012).CrossRefGoogle Scholar
Reinhard, P., Chirila, A., Blosch, P., Pianezzi, F., Nishiwaki, S., Buecheler, S., and Tiwari, A. N., IEEE Journal of Photovoltaics, Vol. 3, Issue 1, 572, (2013).CrossRefGoogle Scholar
Tanaka, K., Kosugi, M., Ando, F., Ushiki, T., Usui, H., and Sato, K., Jpn. J. Appl. Phys. Suppl. 32, 113 (1993).CrossRefGoogle Scholar
Miyazaki, K., Matsushima, O., Moriwake, M., Takasu, H., Ishizuka, S., Sakurai, K., Yamada, A., and Niki, S., Thin Solid Films, Vol. 517, Issue 7, 2392, (2009).CrossRefGoogle Scholar
Lorenz, M. R., Woods, F. F., and Gambino, R. J., J. Phys. Chem. Solids, Vol. 28, 403, (1967).CrossRefGoogle Scholar
Ueda, N., Hosono, H., Waseda, R., and Kawazoe, H., Appl. Phys. Lett. 70(26), 3561 (1997).CrossRefGoogle Scholar
Kikuchi, K., Ohkawa, Y., Miyakawa, K., Matsubara, T., Tanioka, K., Kubota, M., and Egami, N., phys. stat. sol.(c) 8(9), 2800 (2011).Google Scholar
Hanna, G., Jasenek, A., Rau, U., and Schock, H. W., Thin Solid Films, 387, 71 (2001).CrossRefGoogle Scholar
Herberholz, R., Nadenau, V., Ruhle, U., Koble, C., W.Schock, H., and Dimmler, B., Solar Energy Materials and Solar Cells 49, 227 (1997).CrossRefGoogle Scholar
Kaigawa, R., Ohyama, A., Wada, T., and Klenk, R., Thin Solid Films, Vol. 515, Issue 15, 6260, (2007).CrossRefGoogle Scholar
Tanioka, K., Yamazaki, J., Shidara, K., Taketoshi, K., Kawamura, T., Ishioka, S., and Takasaki, Y., IEEE Electron Device Lett. 8, 392 (1987).CrossRefGoogle Scholar
Orita, M., Hiramatsu, H., Ohta, H., Hirano, M., and Hosono, H., Thin Solid Films 411, 134 (2002).CrossRefGoogle Scholar
Singh, R. K. and Narayan, J., Phys. Rev. B, 41, 8843, (1990).CrossRefGoogle Scholar
Tuttle, J. R., Contreras, M. A., Bode, M. H., Niles, D., Albin, D. S., Matsonm, R., Gabor, A. M., Tennant, A., and Noufi, R., Appl.Phys.Lett., 77(1), 1, (1995).Google Scholar
Akaki, Y., Nomoto, K., Nakamura, S., Yoshitake, T., and Yoshino, K., Journal of Physics: Conf. Ser., 100, 082022, (2008).Google Scholar