Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T11:35:47.113Z Has data issue: false hasContentIssue false

Improved Algorithm to Extract Force-distance Curves from Scanning Force Microscope Data

Published online by Cambridge University Press:  10 February 2011

Steven J. Eppell
Affiliation:
Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH
Brian A. Todd
Affiliation:
Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH
Fredy R. Zypman
Affiliation:
Department of Physics and Electronics, University of Puerto Rico, Humacao, PR
Get access

Abstract

Physically meaningful near-surface force fields are used to calculate simulated scanning force microscope cantilever deflection data. The simulated data is used to evaluate the ability of a few models to calculate forces from cantilever deflections. The conventional simple harmonic oscillator model is shown to be significantly inaccurate in converting deflections to forces. A bending beam model is developed which accurately converts deflections to forces. This model is shown to be necessary for accurate assignment of physical meaning to the calculated forces under high force gradient conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Israelachvili, J. N., Surf Sci Rep 14, 109– (1992).Google Scholar
2Israelachvili, J. N., Chen, Yl, and Yoshizawa, H., J Adhes Sci Technol 8, 1231– (1994).Google Scholar
3YI, Chen, Helm, C. A., and Israelachvili, J. N., Langmuir 7, 2694– (1991).Google Scholar
4Yamada, S. and Israelachvili, J., J Phys Chem B 102, 234– (1998).Google Scholar
5Parker, J. L., Prog Surf Sci 47, 205– (1994).Google Scholar
6Rief, M., Oesterhelt, F., Heymann, B., and Gaub, H. E., Science 275, 1295– (1997).Google Scholar
7Strunz, T., Oroszlan, K., Schafer, R., and Guntherodt, H. J., Proc Nat Acad Sci Usa 96, 11277– (1999).Google Scholar
8MacKerell, A. D. and Lee, G. U., Eur Biophys J Biophys Lett 28, 415– (1999).Google Scholar
9EssevazRoulet, B., Bockelmann, U., and Heslot, F., Proc Nat Acad Sci Usa 94, 11935– (1997).Google Scholar
10Grubmuller, H., Heymann, B., and Tavan, P., Science 271, 997– (1996).Google Scholar
11Yingge, Z., Delu, Z., Chunli, B., and Chen, W., Life Sci 65, PL253-PL260 (1999).Google Scholar
12Fritz, J., Anselmetti, D., Jarchow, J., and Fernandez-Busquets, X., J Struct Biol 119, 165– (1997).Google Scholar
13Fritz, J. and Anselmetti, D., Eur J Cell Biol 74, 71– (1997).Google Scholar
14Denk, W. and Pohl, D. W., Appl. Phys. Lett 59, 2171– (1993).Google Scholar
15Butt, H. J., Biophys J 60, 1438 (1991).Google Scholar
16Butt, H. J., Jaschke, M., and Ducker, W., Bioelectrochem Bioenerg 38, 191 (1995).Google Scholar
17Heinz, W. F. and Hoh, J. H., Biophys J 76, 528 (1999).Google Scholar
18Hutter, J. L. and Bechhoefer, J., J Vac Sci Technol B 12, 2251 (1994).Google Scholar
19Ishino, T., Hieda, H., Tanaka, K., and Gemma, N., Jpn J Appl Phys Pt 1 33, 4718 (1994).Google Scholar
20Rotsch, C. and Radmacher, M., Langmuir 13, 2825 (1997).Google Scholar
21Xu, S. H. and Arnsdorf, M. F., Proc Nat Acad Sci Usa 92, 10384 (1995).Google Scholar
22Zypman, F. R. and Eppell, S. J., J Vac Sci Technol B 15, 1853– (1997).Google Scholar
23Hirsekom, S., Rabe, U., and Arnold, W., Nanotechnol 8, 57– (1997).Google Scholar
24Turner, J. A., Hirsekorn, S., Rabe, U., and Arnold, W., J Appl Phys 82, 966– (1997).Google Scholar
25Zypman, F. R. and Eppell, S. J., J Vac Sci Technol B 16, 2099– (1998).Google Scholar