Skip to main content Accessibility help
×
Home

Impedance spectroscopy study of ionic diffusion in polycrystalline ZrO2:Y2O3 solid solution

  • Fábio C. Fonseca (a1), Eliana N. S. Muccillo (a1) and R. Muccillo (a1)

Abstract

The ZrO2:Y2O3 solid solution formation has been followed by impedance spectroscopy and X-ray analysis. The experimental sequence, after mixing 8 mol% Y2O3 to ZrO2, was: attrition milling the mixture, drying, weighing, cold pressing, thermally treating at several different temperatures and times, performing the X-ray diffraction measurements at room temperature, applying metallic electrodes, and performing the impedance spectroscopy measurements in the 300°C-600°C temperature range. A good correlation was found between the decrease of the yttria main diffraction line and the increase of the stabilized zirconia main diffraction line, showing that solid solution is attained at the expenses of yttria, as expected. The impedance spectroscopy data Z(ω, T, t) show that the bulk response follows a t1/2 law, an evidence of yttrium diffusion to zirconia. Moreover, a relationship is found between the bulk resistivity and the elimination of ion blockers for increasing sintering times. The result allowed for the determination of the activation energy for the diffusion of the slowest diffusing species (Zr4+) in ZrO2:Y2O3.

Copyright

References

Hide All
[1] Science and Technology of Zirconia I, Advances in Ceramics, vol. 3, edited by Heuer, A. H., Hobbs, L. W., (Am. Ceram. Soc., Columbus, Ohio, 1981).
[2] Solid Electrolytes and their applications, edited by Subbarao, E. C., (Plenum Press, New York, 1980).
[3] Fouletier, J., Seinera, H. and Kleitz, M., J. Appl. Electrochem. 5, 111 (1975).
[4] Chu, S. H. and Seitz, S. A., J. Sol. State Chem. 23, 297 (1978).
[5] Singhal, S. C., in Sixth Int. Symp. Solid Oxide Fuel Cells (SOFC VI), edited by Singhal, S. C., Dokiya, M., (The Electrochemical Soc., Inc., 1999) p. 39.
[6] Subbarao, E. C. in Science and Technology of Zirconia I, Advances in Ceramics, vol. 3, edited by Heuer, A. H., Hobbs, L. W., (The Am. Ceram. Soc., Columbus, Ohio, 1981) p. 1.
[7] Kroger, F. A. and Vink, H. J., Solid State Physics, Vol. 3, edited by Seitz, F., Turnbull, D., (Academic Press, NY, 1956) p. 307.
[8] Atkinson, A., in Materials Science and Technology, a comprehensive treatment, edited by Cahn, R. W., Haasen, P., Kramer, E. J., Structure and properties of Ceramics, Vol. 11, edited by Swain, M., (VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1994) p. 295.
[9] Lakki, A., Herzog, R., Weller, M., Schubert, H., Reetz, C., Görke, O., Kilo, M. and Borchardt, G., J. Eur. Ceram. Soc. 20, 285 (2000).
[10] Rothman, S. J., in Diffusion in Crystalline Solids, edited by Murch, G. E., Nowick, A. S.. (Academic Press, Orlando, Florida, USA, 1984).
[11] Matzke, Hj., in Nonstoichiometric Oxides, edited by Sorensen, O. T., (Academic Press, N. York, USA, 1981).
[12] Kilo, M., Borchardt, G., Lesage, B., Kaïtasov, O., Weber, S. and Scherrer, S., J. Eur. Ceram. Soc. 20, 2069 (2000).
[13] Bauerle, J. E., J. Phys. Chem. Sol. 30, 2657 (1969).
[14] Kleitz, M., Bernard, H., Fernandez, E. and Schouler, E., in Science and Technology of Zirconia I, Advances in Ceramics, vol. 3, edited by Heuer, A. H., Hobbs, L. W., (The Am. Ceram. Soc., Columbus, Ohio, 1981) p. 310.
[15] Raistrick, I. D. in Impedance Spectroscopy - Emphasizing Solid Material and Systems, edited by Macdonald, J. R., (Wiley Interscience, N. York, 1987) p. 29.
[16] Kleitz, M. and Kennedy, J. H. in Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J. N., Shenoy, G. K., (Elsevier North Holland, 1979) p. 185.
[17] Garvie, R. C. and Nicholson, P. S., J. Am. Ceram. Soc. 55, 303 (1972).
[18] Smigelskas, A. D. and Kirkendall, E. O., Trans. Am. Inst. Min. Met. Eng. 171, 130 (1947).
[19] Roosmalen, J. A. M. van and Cordfunke, E. H. P., Solid State Ionics 52, 303 (1992).
[20] Moghadam, F. K., Yamashita, T. and Stevenson, D. A., in Science and Technology of Zirconia I, Advances in Ceramics, vol. 3, edited by Heuer, A. H., Hobbs, L. W., (The Am. Ceram. Soc., Columbus, Ohio, 1981) p. 364.
[21] Badwal, S. P. S., Solid State Ionics 76, 67 (1995).
[22] Steil, M. C., Thévenot, F. and Kleitz, M., J. Electrochem. Soc. 144, 390 (1997).
[23] Ioffe, A. I., Inozemtzev, M. V., Lipilin, A. S., Perfilev, M. V. and Karpachov, S. V., Pys. Stat. Solidi A 30, 87 (1975).
[24] Verkerk, M. J., Middelhuis, B. J. and Burggraaf, A. J., Solid State Ionics 6, 159 (1982).
[25] Verkerk, M. J., Winnubst, A. J. A. and Burggraaf, A. J., J. Mat. Sci. 17, 3113 (1982).
[26] Schouler, E. J. L., Mesbahi, M. and Vitter, G., Solid State Ionics 9–10, 989 (1983).
[27] Badwal, S. P. S. and Drennan, J., J. Mat. Sci. 22, 3231 (1987).
[28] M. Gödickemeier, Michel, B., Orliukas, A., Bohac, P., Sasaki, K., Gauckler, L., Heinrich, H., Sxhwander, P., Kortorz, G., Hofmann, H. and Frei, O., J. Mat. Res. 9, 1228 (1994).
[29] Aoki, M., Chiang, Y.-M., Kosacki, I., Lee, L. J.-R., Tuller, H. and Lu, Y., J. Am. Ceram. Soc. 79, 1169 (1996).
[30] Florio, D. Z. and Muccillo, R., Solid State Ionics 123, 301 (1999).
[31] Chien, F. R. and Heuer, A. H., Phil. Mag. A 73, 681 (1996).

Related content

Powered by UNSILO

Impedance spectroscopy study of ionic diffusion in polycrystalline ZrO2:Y2O3 solid solution

  • Fábio C. Fonseca (a1), Eliana N. S. Muccillo (a1) and R. Muccillo (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.