Skip to main content Accessibility help
×
Home

Impact of Rapid Thermal Annealing on Thermoelectric Properties of Bulk Nanostructured Zinc Oxide

  • Markus Engenhorst (a1), Devendraprakash Gautam (a1), Carolin Schilling (a1), Markus Winterer (a1), Gabi Schierning (a1) and Roland Schmechel (a1)...

Abstract

In search for non-toxic thermoelectric materials that are stable in air at elevated temperatures, zinc oxide has been shown to be one of only few efficient n-type oxidic materials. Our bottom-up approach starts with very small (<10 nm) Al-doped ZnO nanoparticles prepared from organometallic precursors by chemical vapor synthesis using nominal doping concentrations of 2 at% and 8 at%. In order to obtain bulk nanostructured solids, the powders were compacted in a current-activated pressure-assisted densification process. Rapid thermal annealing was studied systematically as a means of further dopant activation. The thermoelectric properties are evaluated with regard to charge carrier concentration and mobility. A Jonker-type analysis reveals the potential of our approach to achieve high power factors. In the present study, power factors larger than 4×10-4 Wm-1K-2 were measured at temperatures higher than 600 °C.

Copyright

References

Hide All
1. Ohtaki, M., Tsubota, T., Eguchi, K. and Arai, H., J. Appl. Phys. 79, 1816 (1996).
2. Ohtaki, M., Araki, K. and Yamamoto, K., J. Electron. Mater. 38, 1234 (2009).
3. Jood, P., Mehta, R. J., Zhang, Y., Peleckis, G., Wang, X, Siegel, R. W., Borca-Tasciuc, T., Dou, S. X. and Ramanath, G., Nano Lett. 11, 4337 (2011).
4. Snyder, G. J. and Toberer, E.S., Nature Materials 7, 105 (2008).
5. Nielsch, K., Bachmann, J., Kimling, J. and Böttner, H., Adv. Energy Mater. 1, 713 (2011).
6. Ali, M., Friedenberger, N., Spasova, M. and Winterer, M., Chem. Vap. Dep. 15, 192 (2009).
7. Shirouzu, K., Ohkusa, T., Hotta, M., Enomoto, N. and Hojo, J., J. Ceram. Soc. Jpn. 115, 254 (2007).
8. Bérardan, D., Byl, C. and Dragoe, N., J. Am. Ceram. Soc. 93, 2352 (2010).
9. Tsubota, T., Ohtaki, M., Eguchi, K. and Arai, H., J. Mater. Chem. 7, 85 (1997).
10. Hartner, S., Ali, M., Schulz, C., Winterer, M. and Wiggers, H., Nanotechnology 20, 445701 (2009).
11. Sze, S. M. and Ng, K. K., Physics of semiconductor devices, 3rd ed. (Wiley-Interscience, Hoboken, NJ, 2007), p. 789.
12. Schierning, G., Theissmann, R., Stein, N., Petermann, N., Becker, A., Engenhorst, M., Kessler, V., Geller, M., Beckel, A., Wiggers, H. and Schmechel, R., J. Appl. Phys. 110, 113515 (2011).
13. Jonker, G. H., Philips Res. Rep. 23, 131 (1968).
14. Han, J., Mantas, P. Q. and Senos, A. M. R., J. Mater. Res. 16, 459 (2001).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed