Skip to main content Accessibility help
×
Home

The Impact of Domains on the Dielectric and Electromechanical Properties of Ferroelectric Thin Films

  • S. Trolier-McKinstry (a1), P. Aungkavattana (a1), F. Chu (a1), J. Lacey (a1), J-P. Maria (a1), J. F. Shepard (a1), T. Su (a1) and F. Xu (a1)...

Abstract

In ferroelectric thin films for capacitive and piezoelectric applications, it is important to understand which mechanisms contribute to the observed dielectric constant and piezoelectricity. In soft PZT (PbZr1−xTixO3) ceramics, over half the room temperature response is associated with domain wall contributions to the properties. However, recent studies on bulk ceramics have demonstrated that the number of domain variants within grains, and the mobility of the twin walls depend on the grain size. This leads to a degradation in the dielectric and piezoelectric properties for grain sizes below a micron. This has significant consequences for thin films since a lateral grain size of 1 μm is often the upper limit on the observed grain size. In addition, since the pertinent domain walls are ferroelastic, the stress imposed on the film by the substrate could also clamp the piezoelectric response. To investigate these factors, controlled stress levels were imposed on PZT films of different thickness while the dielectric and electromechanical properties were measured. It was found that for undoped sol-gel PZT 40/60, 52/48, and 60/40 thin films under a micron in thickness, the extrinsic contributions to the dielectric and electromechanical properties make very modest contributions to the film response. No significant enhancement in the properties was observed even when the film was brought through the zero global stress condition. Comparable results were obtained from laser ablated films grown from hard and soft PZT targets. Finally, little twin wall mobility was observed in AFM experiments. The consequences of this in terms of the achievable properties in PZT films will be presented. Work on circumventing these limitations via utilization of antiferroelectric phase switching films and relaxor ferroelectric single crystal films will also be discussed.

Copyright

References

Hide All
1. Luginbuhl, Ph., Racine, G. - A., Lerch, Ph., Romanowicz, B., Brooks, K. G., de Rooij, N. F., Renaud, Ph., and Setter, N., Sensors and Actuators A54, 530 (1996).
2. Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K., Setter, N., and Luthier, R., Sensors and Actuators A48, 157 (1995).
3. Chen, H. D., Udayakumar, K. R., Gaskey, C. J., and Cross, L. E., Appl. Phys. Lett. 67, 3411 (1995).
4. Al-Shareef, H. and Dimos, D., Proc. 10th Int. Symp. Appl. Ferroelectrics. 421 (1996).
5. Polla, D. and Francis, L. F., MRS Bull. 21(7), 59(1996).
6. Zhang, X. L., Chen, Z. X., Cross, L. E., and Schulze, W. A., J. Mat. Sci. 18, 968 (1983).
7. Zhang, Q. M., Wang, H., Kim, N., and Cross, L. E., J. Appl. Phys. 75, 454 (1994).
8. Damjanovich, D., Demartin, M., Chu, F., and Setter, N., Proc.10th Int. Symp. Appl. Ferro. (1996).
9. Haun, M. J., Thermodynamic Theory of the Lead Zirconate - Lead Titanate Solid Solution System. Ph. D. Thesis, The Pennsylvania State University (1988).
10. Kim, N., Grain Size Effect on the Dielectric and Piezoelectric Properties in Compositions Which are Near the Morphotropic Phase Boundary of Lead Zirconate - Lead Titanate Based Ceramics. Ph. D. Thesis, The Pennsylvania State University, (1994).
11. Cao, W. and Randall, C., J. Phys. Chem. Sol. 57, 1499 (1996).
12. Demczyk, B. G., Rai, R. S., and Thomas, G., J. Am. Ceram. Soc. 73, 615 (1990).
13. Arlt, G. and Pertsev, N. A., J. Appl. Phys. 70, 2283 (1991).
14. Hendrickson, M., Su, T., Trolier-McKinstry, S., Rod, B. J., and Zeto, R. J., Proc. 10th Int. Symp. Appl. Ferro. 683 (1996).
15. Tani, T., Lakeman, C. D. E., Li, J. F., Xu, A., and Payne, D. A., Ceram. Trans. 43, 89 (1994).
16. Shepard, J. F. Jr, Trolier-McKinstry, S., Hendrickson, M., and Zeto, R., MRS Proc. 459: Materials for Smart Systems II 47 (1997).
17. Brantley, W., J. Appl. Phys. 44, 534 (1973).
18. Tuchiya, T., Itoh, T., Sasaki, G.., and Suga, T., J. Ceram. Soc. Jpn. 104, 159 (1996).
19. Brown, R. F., Can. J. Phys. 39, 741 (1961).
20. Shepard, J. F. Jr, Trolier-McKinstry, S., Hendrickson, M. A., and Zeto, R., Proc. 10th int. Symp. Appl. Ferro. 161 (1996).
21. Tuttle, B. A., Garino, T.J., Voight, J. A., Headley, T. J., Dimos, D., and Eatough, M. O., in Science and Technology of Electroceramic Thin Films. Auciello, O. and Waser, R. (eds) (Kluwer Academic Publishers, The Netherlands 1995), pp. 117 - 132.
22. Piezokinetics, Inc.
23. Lacey, J. L. and Trolier-McKinstry, S., MRS Proc. 459: Materials for Smart Systems II 207 (1997).
24. Zavala, G., Fendler, J. H., and Trolier-McKinstry, S., J. Appl. Phys. 81(11) 74807491 (1997).
25. Meeks, S. W. and Timme, R. W., J. Appl. Phys. 46, 4334 (1975).
26. Zhang, Q. M., Zhao, J., Uchino, K., and Zheng, J., J. Mat. Res. 12 226 (1997).
27. Theis, C. D. and Schlom, D. G. MRS Proc. 401. 171 (1996).
28. Foster, C. et al., MRS Proc. 401, 139 (1996).
29. Gaskey, C. J., Udayakumar, K. R., Chen, H. D., and Cross, L. E., J. Mater. Res. 10, 2764 (1995).
30. Yamakawa, K., Trolier-McKinstry, S., and Dougherty, J. P., Proc. 10th Int. Symp. Appl. Ferro. 405 (1996).
31. Cross, L.E., Pennsylvania State University, private communication (1997).
32. Park, S. E. and Shrout, T. R., presentation at the 1997 Williamsburg Workshop on Ferroelectricity, Feb. 1997.
33. Kugel, V., Pennsylvania State University, private communication (1997).

The Impact of Domains on the Dielectric and Electromechanical Properties of Ferroelectric Thin Films

  • S. Trolier-McKinstry (a1), P. Aungkavattana (a1), F. Chu (a1), J. Lacey (a1), J-P. Maria (a1), J. F. Shepard (a1), T. Su (a1) and F. Xu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed