Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-03T09:47:29.467Z Has data issue: false hasContentIssue false

Impact of Chemomechanical Polishing on the Chemical Composition and Morphology of the Silicon Surface

Published online by Cambridge University Press:  15 February 2011

Hermann Fusstetrer
Affiliation:
Wacker-Chemitronic GmbH, Central R&D, P.O. Box 1140, D-84479 Burghausen, Germany.
Anton Schnegg
Affiliation:
Wacker-Chemitronic GmbH, Central R&D, P.O. Box 1140, D-84479 Burghausen, Germany.
Dieter Gräf
Affiliation:
Wacker-Chemitronic GmbH, Central R&D, P.O. Box 1140, D-84479 Burghausen, Germany.
Helmut Kirschner
Affiliation:
Wacker-Chemitronic GmbH, Central R&D, P.O. Box 1140, D-84479 Burghausen, Germany.
Michael Brohl
Affiliation:
Wacker-Chemitronic GmbH, Central R&D, P.O. Box 1140, D-84479 Burghausen, Germany.
Peter Wagner
Affiliation:
Wacker-Chemitronic GmbH, Central R&D, P.O. Box 1140, D-84479 Burghausen, Germany.
Get access

Abstract

The polishing technology used for manufacturing ultraflat and smooth Si surfaces on a large scale is the chemomechanical polishing (CMP) technique. This technique combines the chemical corrosive removal of silicon atoms and the mechanical transport of the agents. The removal rates strongly depend on the interaction of mechanical parameters and the chemistry involved in the polishing process like the pH of the alkaline polishing slurry used. Removal of Si during CMP is explained by a nucleophilic attack of OH to silicon atoms catalyzing the corrosive reaction of H2O resulting in cleavage of silicon backbonds. Characterization of the surface chemistry of the silicon wafer after polishing by X-Ray Photoelectron Spectroscopy and High-Resolution Electron Energy Loss Spectroscopy reveals an oxide free, predominantly hydride covered silicon surface displaying hydrophobic properties. Morphological features like microroughness as well as localized surface irregularities on the silicon surface, also referred to as Light Point Defects, depend on different strongly interacting process parameters. Microroughness is reduced by CMP by several orders of magnitude as characterized by lightscattering techniques and Atomic Force Microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mendel, E., Solid State Technol. 10 (1967) 27.Google Scholar
2. Karaki, T., Miyake, S., Watanabe, J., Bull. Jpn. Soc. of Prec. Engg. 12 (1978) 207.Google Scholar
3. Schnegg, A., Grundner, M., Jacob, H., in Semiconductor Silicon 1986, Huff, H.R., Abe, T., Kolbesen, B. PV 86–4, The Electrochemical Society Softbound Proceedings Series, Pennington, NJ (1986) 198.Google Scholar
4. Feng-wei, L., Guo-chen, C., Guang-yu, W., Semiconductor Silicon (1986) Proc. 5th Int. Symp. 183.Google Scholar
5. Iscoff, R., Semicond. Int. (1993) 72.Google Scholar
6. Seidel, H., Csepregi, L., Heuberger, A., Baumgfirtel, H., J. Electrochem. Soc. 137 (1990) 3612.Google Scholar
7. Pietsch, G.J., Higashi, G.S., Chabal, Y.J., Appl. Phys. Lett. 64 (1994) 3115.Google Scholar
8. Karaki, T., Miyake, S., Watanabe, J., Bull. Jpn. Soc. of Prec. Engg. 15 (1981) 14.Google Scholar
9. Mendel, E., Kaplan, P., Patsis, A.V., IBM Techn. Rep. 22. 2341 (1980).Google Scholar
10. Seidel, H., Csepregi, L., Heuberger, A., Baumgärtel, H., J. Electrochem. Soc. 137 (1990) 3626.Google Scholar
11. Kern, W. and Puotinen, D.A., RCA Rev. 31, 187 (1970).Google Scholar
12. Grundner, M. and Jacob, H., Appl. Phys. A 39, 73 (1986).Google Scholar
13. Grundner, M., Gräf, D., Hahn, P.O. and Schnegg, A., Solid State Technology, 69 (1991).Google Scholar
14. Gräf, D., Grundner, M., Schulz, R., and Mühlhoff, L., J. Appl. Phys. 68, 5155 (1990).Google Scholar
15. Burrows, V. A., Chabal, Y. J., Higashi, G. S., Raghavachari, K., and Christman, S. B., Appl. Phys. Lett. 53, 998 (1988).Google Scholar
16. Gräf, D., Grundner, M., and Schulz, R., J. Vac. Sci. Technol. A7, 808 (1989).Google Scholar
17. Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
18. Ibach, H., Bruchmann, D., Wagner, H., Appl. Phys. A29, 113 (1982).Google Scholar
19. Froitzheim, H., Köhler, U., and Lammering, H., Surf. Sci. 149, 537 (1985).Google Scholar
20. Schaefer, J. A., Stucki, F., Frankel, D.J., Göpel, W., and Lapeyre, G.J., J. Vac. Sci. Technol. B2, 359 (1984).Google Scholar
21. Prigge, H., Gerlach, P., Hahn, P.O., Schnegg, A., and Jacob, H., J. Electrochem. Soc. 138 (1991) 1385.Google Scholar
22. Schnegg, A., Lampert, I., and Jacob, H., Electrochem. Soc. Ext. Abstr. 85–1, No. 271, Toronto (1985).Google Scholar
23. Lampert, I., Fußstetter, H., and Jacob, H., J. Electr. Soc. 133, 1472 (1986).Google Scholar
24. Hahn, P.O., Grundner, M., Schnegg, A., Jacob, H., in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, eds. Helms, C.R. and Deal, B.E., Plenum Publishing Corp. (1988) 401.Google Scholar
25. Hahn, P.O. and Kerstan, M., SPIE Proc. Vol.1009, 172 (1988).Google Scholar
26. Steigmeier, E.F. and Auderset, H., Appl. Phys. A50 (1990) 531.Google Scholar
27. Abe, T., Steigmeier, E.F., Hagleitner, W., and Pidduck, A.J., Jpn. J. Appl. Phys. 31 (1992) 721.Google Scholar
28. Ryuta, J., Morita, E., Tanaka, T., and Shimanuki, Y., Jpn. J. Appl. Phys. 29 L1947 (1990).Google Scholar
29. Ryuta, J., Morita, E., Tanaka, T., and Shimanuki, Y., Jpn. J. Appl. Phys. 31 L293 (1992).Google Scholar
30. Brohl, M., Gräf, D., Wagner, P., Lambert, U., Gerber, H. A., Piontek, H.; ECS Fall Meeting Volume 94–2, Miami Beach, Oct. 9–14, 1994, p. 619.Google Scholar
31. Klingshirn, H., and Gerlach, P., UCS 3, 407 (1991).Google Scholar
32. Wagner, P., Brohl, M., Gräf, D., Lambert, U.; Mat. Res. Soc. Symp. Proc. (1995), to be published.Google Scholar
33. Gräf, D., Brohl, M., Bauer-Mayer, S., Ehlert, A., Wagner, P., and Schnegg, A.; Mat. Res. Soc. Symp. Proc. Vol.315, 23 (1993).Google Scholar