Skip to main content Accessibility help
×
Home

Imidazole-Based Solvents and Membranes for CO2 Capture Applications

  • Jason E. Bara (a1) (a2), Matthew S. Shannon (a1), W. Jeffrey Horne (a1), John W. Whitley (a1), Haining Liu (a1), David A. Wallace (a1), Heath Turner (a1), Sergey P. Verevkin (a3), Nathan Brown (a2), Greg Staab (a2) and Rene Kupfer (a2)...

Abstract

Imidazoles present a tunable, versatile and economical platform for the development of novel liquid solvents and polymer membranes for CO2 capture. An overview of our studies in this area is presented, with emphasis on characterization of structure-property relationships in imidazole-based materials through both experimental and computational studies. To this end, a growing library of systematically varied imidazole compounds has been synthesized using only commercial available starting materials and straightforward reactions. Using this library of compounds, we have sought to understand and develop predictive models for thermophysical properties relating to process design, including: density, viscosity, vapor pressure, pKa and CO2 absorption capacity. Furthermore, we have discovered that imidazoles are stable in the presence of SO2 and can form reversible 1:1 adducts, which can be beneficial as SO2 is typically present at ppm levels alongside CO2 in flue gas from coal-fired power plants.

Copyright

References

Hide All
[1] Rochelle, G. T., “Amine Scrubbing for CO2 Capture,” Science, vol. 325, pp. 16521654, Sep 2009.
[2] Tennyson, R. N. and Schaaf, R. P., “Guidelines can help choose proper process for gas-treating plants,” Oil & Gas Journal, vol. 75, pp. 7886, 1977.
[3] Kidnay, A. J. and Parrish, W. R., Fundamentals of Natural Gas Processing. Boca Raton, FL: CRC Press: Taylor & Francis Group, 2006.
[4] NETL. (2013, 22 July 2013). DOE/NETL Advanced Carbon Dioxide Capture R&D Program: May 2013 Update . Available: http://www.netl.doe.gov/technologies/coalpower/ewr/pubs/CO2-Capture-Tech-Update-2013.pdf
[5] Bucklin, R. W. and Schendel, R. L., “Physical Solvent Processes Can Be Very Useful for Acid Gas Removal Applications,” Energy Progress, vol. 4, pp. 137142, 1984.
[6] Burr, B. and Lyddon, L., “A Comparison of Physical Solvents for Acid Gas Removal,” presented at the Gas Processors' Association Convention, Grapevine, TX, 2008.
[7] Astarita, G., Savage, D. W., and Bisio, A., Gas Treating with Chemical Solvents. New York: John Wiley & Sons, 1983.
[8] Baker, R. W. and Lokhandwala, K., “Natural Gas Processing with Membranes: An Overview,” Industrial & Engineering Chemistry Research, vol. 47, pp. 21092121, 2008.
[9] Baker, R. W., “Future Directions of Membrane Gas Separation Technology,” Industrial & Engineering Chemistry Research, vol. 41, pp. 13931411, 2002.
[10] Bara, J. E., Carlisle, T. K., Gabriel, C. J., Camper, D., Finotello, A., Gin, D. L., et al. ., “Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 48, pp. 27392751, Mar 2009.
[11] Bara, J. E., Camper, D. E., Gin, D. L., and Noble, R. D., “Room-Temperature Ionic Liquids and Composite Materials: Platform Technologies for CO2 Capture,” Accounts of Chemical Research, vol. 43, pp. 152159, Jan 2010.
[12] Ramdin, M., de Loos, T. W., and Vlugt, T. J. H., “State-of-the-Art of CO2 Capture with Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 51, pp. 81498177, 2012/06/20 2012.
[13] Camper, D., Bara, J. E., Gin, D. L., and Noble, R. D., “Room-Temperature Ionic Liquid-Amine Solutions: Tunable Solvents for Efficient and Reversible Capture Of CO2,” Industrial & Engineering Chemistry Research, vol. 47, pp. 84968498, Nov 2008.10.1021/ie801002m
[14] Bates, E. D., Mayton, R. D., Ntai, I., and Davis, J. H., “CO2 capture by a task-specific ionic liquid,” Journal of the American Chemical Society, vol. 124, pp. 926927, Feb 2002.
[15] Gurkan, B. E., de la Fuente, J. C., Mindrup, E. M., Ficke, L. E., Goodrich, B. F., Price, E. A., et al. ., “Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids,” Journal of the American Chemical Society, vol. 132, pp. 21162117, Feb 2010.
[16] Bara, J. E., “What chemicals will we need to capture CO2?,” Greenhouse Gases: Sci. Technol., vol. 2, pp. 162171, // 2012.
[17] Shannon, M. S. and Bara, J. E., “Properties of Alkylimidazoles as Solvents for CO2 Capture and Comparisons to Imidazolium-Based Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 50, pp. 86658677, 2011.10.1021/ie200259h
[18] Bara, J. E., “Versatile and Scalable Method for Producing N-Functionalized Imidazoles,” Ind. Eng. Chem. Res., vol. 50, pp. 1361413619, // 2011.10.1021/ie102535c
[19] McCabe, W. L., Smith, J. C., and Harriott, P., Unit Operations of Chemical Engineering, 6th ed. New York: McGraw-Hill, 2001.
[20] Freeman, S. A., Dugas, R., Van Wagener, D. H., Nguyen, T., and Rochelle, G. T., “Carbon dioxide capture with concentrated, aqueous piperazine,” International Journal of Greenhouse Gas Control, vol. 4, pp. 119124, Mar 2010.
[21] Hindman, M. S., Stanton, A. D., Irvin, A. C., Wallace, D. A., Moon, J. D., Reclusado, K. R., et al. ., “Synthesis of 1,2-dialkyl-, 1,4(5)-dialkyl-, and 1,2,4(5)-trialkylimidazoles via a one-pot method,” Ind. Eng. Chem. Res., vol. 52, pp. 1188011887, // 2013.10.1021/ie401861b
[22] Gutowski, K. E. and Maginn, E. J., “Amine-Functionalized Task-Specific Ionic Liquids: A Mechanistic Explanation for the Dramatic Increase in Viscosity upon Complexation with CO2 from Molecular Simulation,” Journal of the American Chemical Society, vol. 130, pp. 1469014704, Nov 2008.
[23] Shannon, M. S. and Bara, J. E., “Reactive and Reversible Ionic Liquids for CO2 Capture and Acid Gas Removal,” Separation Science and Technology, vol. 47, pp. 178188, 2012/01/15 2012.
[24] Emel'yanenko, V. N., Portnova, S. V., Verevkin, S. P., Skrzypczak, A., and Schubert, T., “Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles,” Journal of Chemical Thermodynamics, vol. 43, pp. 15001505, Oct 2011.
[25] Emel'yanenko, V. N., Portnova, S. V., Verevkin, S. P., and Skrzypczak, A., “Building Blocks for Ionic Liquids: A Study of Alkyl Chain Length Dependence of Vaporization Enthalpies of 1-(n-Alkyl)-2-methylimidazoles,” Journal of Chemical & Engineering Data, vol. 56, pp. 35323540, 2011/09/08 2011.10.1021/je200336c
[26] Verevkin, S. P., Zaitsau, D. H., Emel'yanenko, V. N., Paulechka, Y. U., Blokhin, A. V., Bazyleva, A. B., et al. ., “Thermodynamics of Ionic Liquids Precursors: 1-Methylimidazole,” Journal of Physical Chemistry B, vol. 115, pp. 44044411, Apr 2011.
[27] Garist, I. V., Verevkin, S. P., Bara, J. E., Hindman, M. S., and Danielsen, S. P. O., “Building Blocks for Ionic Liquids: Vapor Pressures and Vaporization Enthalpies of 1-(n-Alkyl)-benzimidazoles,” Journal of Chemical & Engineering Data, vol. 57, pp. 18031809, 2012.
[28] Garist, I. V., Verevkin, S. P., Samarov, A. A., Bara, J. E., Hindman, M. S., and Danielsen, S. P. O., “Building Blocks for Ionic Liquids: Vapor Pressures and Vaporization Enthalpies of Alkoxy Derivatives of Imidazole and Benzimidazole,” Ind. Eng. Chem. Res., vol. 51, pp. 1551715524, // 2012.
[29] Shannon, M. S., Tedstone, J. M., Danielsen, S. P. O., Hindman, M. S., and Bara, J. E., “Properties and Performance of Ether-Functionalized Imidazoles as Physical Solvents for CO2 Separations,” Energy Fuels, vol. 27, pp. 33493357, // 2013.
[30] Shannon, M. S., Tedstone, J. M., Danielsen, S. P. O., and Bara, J. E., “Evaluation of Alkylimidazoles as Physical Solvents for CO2/CH4 Separation,” Industrial & Engineering Chemistry Research, vol. 51, pp. 515522, 2012/01/11 2012.
[31] Shannon, M. S., Hindman, M. S., Danielsen, S. P. O., Tedstone, J. M., Gilmore, R. D., and Bara, J. E., “Properties of alkylbenzimidazoles for CO2 and SO2 capture and comparisons to ionic liquids,” Sci. China: Chem., vol. 55, pp. 16381647, // 2012.
[32] Liu, H., Zhang, Z., Bara, J. E., and Turner, C. H., “Electrostatic Potential within the Free Volume Space of Imidazole-Based Solvents: Insights into Gas Absorption Selectivity,” J. Phys. Chem. B, vol. 118, pp. 255264, // 2014.
[33] Turner, C. H., Cooper, A., Zhang, Z., Shannon, M. S., and Bara, J. E., “Molecular Simulation of the Thermophysical Properties of N-Functionalized Alkylimidazoles,” The Journal of Physical Chemistry B, vol. 116, pp. 65296535, 2012.
[34] Liu, H., Bara, J. E., and Turner, C. H., “DFT study on the effect of exocyclic substituents on the proton affinity of 1-methylimidazole,” Chem. Phys., vol. 416, pp. 2125, // 2013.
[35] Yao, K., Wang, Z., Wang, J., and Wang, S., “Biomimetic material-poly(N-vinylimidazole)-zinc complex for CO2 separation,” Chemical Communications, vol. 48, pp. 17661768, 2012.
[36] Allen, M. H., Hemp, S. T., Smith, A. E., and Long, T. E., “Controlled Radical Polymerization of 4-Vinylimidazole,” Macromolecules, vol. 45, pp. 36693676, 2012/05/08 2012.
[37] Green, M. D., Allen, M. H. Jr, Dennis, J. M., Cruz, D. S.-d. l, Gao, R., Winey, K. I., et al. ., “Tailoring macromolecular architecture with imidazole functionality: A perspective for controlled polymerization processes,” European Polymer Journal, vol. 47, pp. 486496, 2011.
[38] Anderson, E. B. and Long, T. E., “Imidazole- and imidazolium-containing polymers for biology and material science applications,” Polymer, vol. 51, pp. 24472454, May 2010.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed