Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T05:14:45.524Z Has data issue: false hasContentIssue false

Imaging Oxide-Covered Doped Silicon Structures Using Low-Energy Electron Microscopy

Published online by Cambridge University Press:  01 February 2011

Meredith Anderson
Affiliation:
mlande@sandia.gov, Sandia National Laboratories, XXX, XXX, Albuquerque, NM, 87123, United States
C.Y. Nakakura
Affiliation:
mlande@sandia.gov, Sandia National Laboratories, XXX, XXX, Albuquerque, NM, 87123, United States
K.F. Saiz
Affiliation:
mlande@sandia.gov, Sandia National Laboratories, XXX, XXX, Albuquerque, NM, 87123, United States
G.L. Kellogg
Affiliation:
mlande@sandia.gov, Sandia National Laboratories, XXX, XXX, Albuquerque, NM, 87123, United States
Get access

Abstract

Low energy electron microscopy (LEEM) operated at incident electron energies just above the “mirror” mode is used to image Si-based test devices. Significant p- vs. n- doping contrast is observed, even when the structures are covered with a ∼3.5 nm thermal oxide. The contrast arises from a difference in surface potential between the two regions and is related to both p-n work function differences and electron-beam-induced charging of the oxide. The results show that the LEEM is capable of characterizing pn junctions without complicated sample preparation and that it is a promising technique for rapid, non-destructive imaging of microelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Giesen, M., Phaneuf, R. J., Williams, E. D., and Einstein, T. L., Surface Sci. 396, 411 (1998).Google Scholar
2. Ballarotto, V. W., Siegrist, K., Phaneuf, R. J., Williams, E. D., and Mogren, S., Surface Sci. 461, L570 (2000).Google Scholar
3. Ballarotto, V. W., Siegrist, K., Phaneuf, R. J., Williams, E. D., Wang, W.-C., and Nemanich, R. J., Appl. Phys. Lett. 78, 3547 (2001).10.1063/1.1376151Google Scholar
4. Ballarotto, V. W., Breban, M., Siegrist, K., Phaneuf, R. J., and Williams, E. D., J. Vac. Sci. Technol. B, 20, 2514 (2002).10.1116/1.1525007Google Scholar
5. Siegrist, K., Ballarotto, V. W., Breban, M., Yongsunthon, R., and Williams, E. D., Appl. Phys. Lett. 84, 1419 (2004).10.1063/1.1650914Google Scholar
6. Frank, L., Müllerová, I., Valdaitsev, D. A., Gloskovskii, A., Neoijko, S. A., Elmers, H.-J., and Shönhense, G., J. Appl. Phys. 100, 093712 (2006).10.1063/1.2364044Google Scholar
7. Elmitec Elektronnenmikroskopie, GmbH. For a review of the technique, see: Bauer, E., Rep. Prog. Phys. 57, 895 (1994).10.1088/0034-4885/57/9/002Google Scholar
8. Anderson, M. L., Nakakura, C. Y., and Kellogg, G. L., unpublished.Google Scholar