Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T09:49:08.212Z Has data issue: false hasContentIssue false

Image Deconvolution - An Effective Tool of Crystal Structure and Defect Determination in High-Resolution Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

Fanghua Li
Affiliation:
lifh@aphy.iphy.ac.cn, Institute of Physics, Physics, Chinese Academy of Sciences, Beijing, P.O. Box 603, Beijing, 100086, China
Chunyan Tang
Affiliation:
chunyan.tang@gmail.com, Chinese Academy of Sciences, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, China
Get access

Abstract

Image deconvolution is introduced as an effective tool to enhance the determination of crystal structures and defects in high-resolution electron microscopy. The essence is to transform a single image that does not intuitively represent the examined crystal structure into the structure image. The principle and method of image deconvolution together with the related image contrast theory, the pseudo weak phase object approximation (pseudo WPOA), are briefly described. The method has been applied to different types of dislocations, twin boundaries, stacking faults, and one-dimensional incommensurate modulated structures. Results on the semiconducting epilayers Si0.76Ge0.24/Si and 3C-SiC/Si are given in some detail. The results on other compounds including AlSb/GaAs, GaN, Y0.6Na0.4Ba2Cu2.7Zn0.3O7-δ, Ca0.28Ba0.72Nb2O6 and Bi2.31Sr1.69CuO6+δ are briefly summarized. It is also shown how to recognize atoms of Si from C based on the pseudo WPOA, when the defect structures in SiC was determined at the atomic level with a 200 kV LaB6 microscope.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cowley, J. M. and Iijima, S., Z. Naturforsch. A27, 445 (1972).Google Scholar
2. Uyeda, N., Kobayashi, T., Suito, Y., and Harada, M., J. Appl. Phys. 43, 5189 (1972).Google Scholar
3. Scherzer, O., J. Appl. Phys. 20, 20 (1949).Google Scholar
4. Schiske, P., in Proceedings 4th European Conference on Electron Microscopy (Rome, 1968) pp. 145–146.Google Scholar
5. Dyck, D. van, Lichte, H., and Mast, K. D. Van der, Ultramicroscopy 64, 1 (1996).Google Scholar
6. Li, F. H., J. Microscopy 190, 249 (1998).Google Scholar
7. Li, F. H., Zeitschrift fur Kristallographie 218, 279 (2003).Google Scholar
8. Li, F. H. and Tang, D., Acta Cryst. A41, 376 (1985).Google Scholar
9. Li, F. H., Wang, D. and He, W. Z., and Jiang, H., J. Electron Microsc. 49, 17 (2000).Google Scholar
10. Hu, J. J. and Li, F. H., Ultramicroscopy 35, 339 (1991).Google Scholar
11. Huang, D. X., He, W. Z., and Li, F. H., Ultramicroscopy 62, 141 (1996).Google Scholar
12. Wang, H. B., Wang, Y. M., and Li, F. H., Ultramicroscopy 99, 165 (2004).Google Scholar
13. Thon, F., “Phase contrast electron microscopy,Electron Microscopy in Material Science, ed. Valdré, U. (Academic press, New York and London, 1971) pp. 570625.Google Scholar
14. Wang, D., Chen, H., Li, F. H., Kawasaki, K., and Oikawa, T., Ultramicroscopy 93, 139 (2002).Google Scholar
15. Wang, D., Zou, J., Chen, H., Li, F. H., Kawasaki, K., and Oikawa, T., Ultramicroscopy 98, 259 (2004).Google Scholar
16. Tang, C. Y., Wang, R., Li, F. H., Zheng, X. H., and Liang, J. W., Phys. Rev. B75, 184103 (2007).Google Scholar
17. Wen, C., Wan, W., Li, F. H., Li, Z. H., Zhou, J. M., and Chen, H., Proceedings of the 9th Asian-Pacific Microscopy Conference (Jeju, Korea 2008), 531532.Google Scholar
18. Wan, W., Tang, C. Y., Wang, Y. M. and Li, F.H., Acta Physica Sinica. 54(9), 4273 (2005)Google Scholar
19. Wang, Y. M., Wan, W., Wang, R., Li, F. H. and Che, G. C., Philosophical Magazine Letters 88(3), 481(2008).Google Scholar
20. Ge, B. H., Wang, Y. M., Wang, X. M., and Li, F. H., Philosophical Magazine Letters 88(3), 213 (2008).Google Scholar
21. Li, F. H., Li, X. M. and Ge, B., Proceedings of the 9th Asian-Pacific Microscopy Conference (Jeju, Korea 2008), 137138.Google Scholar
22. Bourret, A., Desseaux, J., and Renault, A., Phil. Mag. A45, 1 (1982).Google Scholar
23. McGibbon, A. J., Pennycook, S. J., and Angelo, J. E., Science 269, 519 (1995).Google Scholar
24. Tang, C. Y. and Li, F H, J. Electron Microscopy 54, 445 (2005).Google Scholar
25. Blumenau, A. T., Fall, C. J., Jones, R., Öberg, S., Frauenheim, T., and Briddon, P. R., Phys. Rev. B68, 174108 (2003).Google Scholar
26. Holt, D. B., J. Phys. Chem. Solids 25, 1385 (1964).Google Scholar