Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T01:09:02.813Z Has data issue: false hasContentIssue false

Identification of tetrahedrally coordinated atoms in supercooled liquid silicon

Published online by Cambridge University Press:  17 March 2011

Luigi Brambilla
Affiliation:
Istituto Nazionale di Fisica della Materia (INFM)
Massimo Celino
Affiliation:
Istituto Nazionale di Fisica della Materia (INFM) ENEA, Casaccia Research Center, HPCN Project, P.O. Box 2400, 00100 Roma (I)
Fabrizio Cleri
Affiliation:
Istituto Nazionale di Fisica della Materia (INFM) ENEA, Casaccia Research Center, New materials Division, P.O. Box 2400, 00100 Roma (I)
Luciano Colombo
Affiliation:
Istituto Nazionale di Fisica della Materia (INFM) Physics Dept., Università di Cagliari, Cittadella Universitaria, 09042 Monserrato (Ca) (I)
Roberto Conversano
Affiliation:
ENEA, Casaccia Research Center, HPCN Project, P.O. Box 2400, 00100 Roma (I)
Mario Rosati
Affiliation:
Consorzio Interuniversitario per le Applicazioni del Supercalcolo per Università e Ricerca (CASPUR), Università degli Studi, “La Sapienza”, P.le A. Moro 2, 00185 Roma, (Italy)
Vittorio Rosato
Affiliation:
Istituto Nazionale di Fisica della Materia (INFM) ENEA, Casaccia Research Center, HPCN Project, P.O. Box 2400, 00100 Roma (I)
Get access

Abstract

An atomic-scale model of liquid silicon has been cooled from high temperatures down in the temperature range between the amorphous and the crystalline melting temperatures by nanosecond scale molecular dynamics simulations with the Stillinger-Weber potential. Tetrahedrally coordinated sites have been identified, in the supercooled liquids, by using a few structural order parameters. The local structure and the stability of these crystalline-like regions (c-type sites and clusters) have been characterized. These have been regarded as candidates for crystalline embryos.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. and Jacobsen, D. C., J. Appl. Phys., 57, 1795 (1985).Google Scholar
2. Mariucci, L. et al. , Jpn. J. Appl. Phys. Lett., 38, L907 (1999)Google Scholar
3. Brambilla, L., Colombo, L., Rosato, V. and Cleri, F., Appl. Phys. Lett., 77, 2337 (2000).Google Scholar
4. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
5. Jakse, N., Kadiri, Y. and Bretonnet, J.-L., Phys. Rev. B 61, 14287 (2000).Google Scholar
6. Ansell, S., Krishnan, S., Felten, J. J., Price, D. L., J. Phys.: Condens. Matter 10, L73 (1998).Google Scholar
7. Rosato, V., Celino, M., J. Appl. Phys. 86, 6826 (1999).Google Scholar
8. Stiffler, S. R., Thompson, M. O., Peercy, P. S., Phys. Rev. B, 43, 9851 (1991).Google Scholar