Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T00:56:05.801Z Has data issue: false hasContentIssue false

Hydrothermal Synthesis of Zinc Oxide Nanowires on Kevlar using ALD and Sputtered ZnO Seed Layers

Published online by Cambridge University Press:  31 January 2011

John Conley
Affiliation:
ashleydianemason@gmail.com, Oregon State University, Corvallis, Oregon, United States
Ashley Diane Mason
Affiliation:
twaggoner@gmail.com, Oregon State University, Corvallis, Oregon, United States
Todd Jason Waggoner
Affiliation:
smithsea@onid.orst.edu, Oregon State University, Corvallis, Oregon, United States
Sean Weston Smith
Affiliation:
jconley@eecs.oregonstate.edu, Oregon State University, Corvallis, Oregon, United States
Brady Gibbons
Affiliation:
brady.gibbons@oregonstate.edu, Oregon State University, Corvallis, Oregon, United States
David Price
Affiliation:
David.Price@onsemi.com, ON Semiconductor, Gresham, Oregon, United States
Derryl Allman
Affiliation:
Derryl.Allman@onsemi.com, ON Semiconductor, Gresham, Oregon, United States
Get access

Abstract

Low temperature hydrothermal methods allow for growth of nanowires on novel substrates. We examine the impact of variations in chemical concentration, time, temperature, and seed layer on nanowire (NW) growth and crystallite formation. The majority of growth (NWs and crystallites) was found to occur within the first two hours. Lower Zn(NO3)2 concentrations produced a reduction in the undesired large crystallites, whereas hexamethylene tetramine (HMT) concentration did not largely impact crystallite density or nanowire morphology. Growth temperature appeared to impact NW diameter variation. Nanowires grow only on the ZnO seed layer and crystallites seem to attach preferentially to the bare Kevlar surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Qin, Y. Wang, X. and Wang, Z. L. Nature 451, 809814, (2008).Google Scholar
2 Wang, Z. L. Adv. Mater. 19 (6), 889 (2007).Google Scholar
3 Gao, Y. and Wang, Z. L. Nano Lett. 7 (8), 2499 (2007).Google Scholar
4 Wang, X. D. Liu, J. Song, J. H. and Wang, Z. L. Nano Lett. 7 (8), 2475 (2007).Google Scholar
5 Wang, Z. L. J. Nanosci. Nanotechnol. 8 (1), 27 (2008).Google Scholar
6 Liu, J. Fei, P. Zhou, J. Tummala, R. and Wang, Z. L. Appl. Phys. Lett. 92 (17), 173105–1 (2008).Google Scholar
7 Wang, Z. L. Adv. Funct. Mater. 18 (22), 3553 (2008).Google Scholar
8 Zhou, J. et al. , Nano Lett. 8 (9), 2725 (2008).Google Scholar
9 Lu, M.P. et al. , Nano Lett. 9 (3), 12231227 (2009).Google Scholar
10 Iyer, R. V. and Vijayan, K. Bull. Mater. Sci. 22 (7), 1013 (1999).Google Scholar
11 Mosquera, M. E. G. Jamond, M. Martinez-Alonso, A. and Tascon, J. M. D., Chem. Mater. 6 (11), 1918 (1994).Google Scholar
12 Conley, J.F. Jr. , Stecker, L. and Ono, Y. Appl. Phys. Lett. 87, 223114 (2005).Google Scholar
13 Conley, J.F. Jr. , Stecker, L. and Ono, Y. Nanotech. 16, 292 (2005).Google Scholar
14 Wagner, R. S. Ellis, W. C. Appl. Phys. Lett. 4 (5), 89 (1964).Google Scholar
15 Huang, J. Liu, S. Wang, Y. Ye, Z. Appl. Surf. Sci. 254 (18), 59175920 (2008).Google Scholar
16 Mizerovskii, L. N. Zakharova, I. M. Zavadskii, A. E. and Zhukova, Z. N. Fibre Chem., 30 (5), 303307 (1998).Google Scholar
17 Greene, L. E. Yuhas, B. D. Law, M. Zitoun, D. and Yang, P. Inorganic Chemistry 45 (19), 75357543 (2006).Google Scholar
18 Li, Q. et al. , Chem. of Mater. 17 (5), pp. 10011006 (2005).Google Scholar
19 Jung, S. Oh, E. Lee, K. Park, W. and Jeong, S. Adv. Mater. 19 (5), 749753 (2007).Google Scholar
20 Greene, L. E. Law, M. et al. , Angew. Chem. Int. Ed., 42, 30313034 (2003).Google Scholar
21 Tian, Z. R. et al. , Nature Mater. 2, 821826 (2003).Google Scholar