Skip to main content Accessibility help
×
Home

Hydrothermal Synthesis of Novel Vanadium Oxides

  • M. Stanley Whittingham (a1), Elizabeth Boylan (a1), Rongji Chen (a1), Thomas Chirayil (a1), Fan Zhang (a1) and Peter Y. Zavalij (a1)...

Abstract

Extending our prior work on tungsten and molybdenum oxides, we have found that a wide variety of vanadium oxides can be prepared using hydrothermal methods. These include a number of layer compounds as well as cluster complexes. The starting reaction medium usually contained vanadium pentoxide, an alkali containing compound such as LiOH, an organic template such as tetramethylammonium, and the pH of the whole was controlled by the addition of acid. Reaction temperature was 150°C to 200°C, and time was up to 3 days. A new lithium vanadium oxide, which has the simplest structure of any layered vanadium oxide, was formed. The lithium could be readily removed leading to a new form of vanadium dioxide. This vanadium oxide was also capable of intercalating a variety of other ionic and molecular species. Several other new vanadium oxides containing the TMA cation were also formed; one of these TMAV3O7 readily absorbed oxygen to form TMAV3O8. Addition of zinc or iron to the reaction medium caused the formation of layer structures containing double V2O5 layers; for iron the TMA was retained in the structure whereas for zinc the TMA was excluded. Changing the organic entity resulted in other new structures, for example methylamine and dimethylamine gave tetragonal structures.

Copyright

References

Hide All
1. Rouxel, J., Tournoux, M., and Bree, R., ed. Soft Chemistry Routes to New Materials -Chimie Douce-. Materials Science Forum, Vol. 152–153. 1994, Trans Tech Publications: Switzerland.
2. Whittingham, M. S., Current Opinion in Solid State and Materials Science, 1 (1996) 227.
3. Günter, J. R., Amberg, M., and Schmalle, H., Mat. Res. Bull., 24 (1989) 289.
4. Reis, K. P., Ramanan, A., and Whittingham, M. S., Chem. Mater., 2 (1990) 219.
5. Reis, K. P. and Whittingham, M. S., J. Solid State Chem., 91 (1991) 394.
6. Reis, K. P., Ramanan, A., Gloffke, W., and Whittingham, M. S.. Synthesis, Diffusion and Ion-Exchange in Open Structure Sodium Tungstates and YBaCuTungstates. in Solid State Ionics II. 210 (1991) 473. Boston, MA: Materials Research Society.
7. Reis, K. P., Ramanan, A., and Whittingham, M. S., J. Solid State Chem., 96 (1992) 31.
8. Reis, K. P., Prince, E., and Whittingham, M. S., Chem. Mater., 4 (1992) 307.
9. Zavalij, P., Guo, J., Whittingham, M. S., Jacobson, R. A., Pecharsky, V., Bucher, C., and Hwu, S.-J., J. Solid State Chem., 123 (1996) 83.
10. Guo, J., Zavalij, P., and Whittingham, M. S., Eur. J. Solid State Chem, 31 (1994) 833.
11. Guo, J.-D., Zavalij, P., and Whittingham, M. S., J. Solid State Chem, 117 (1995) 323.
12. Guo, J., Zavalij, P., and Whittingham, M. S., Chem. Mater., 6 (1994) 357.
13. Whittingham, M. S., Li, J., Guo, J., and Zavalij, P.. Hydrothermal Synthesis of New Oxide Materials using the Tetramethyl Ammonium Ion. in Soft Chemistry Routes to New Materials. 152–153 (1993) 99. Nantes, France: Trans Tech Publications Ltd.
14. Li, Y. J. and Whittingham, M. S., Solid State Ionics, 63 (1993) 391.
15. Whittingham, M. S., Guo, J., Chen, R., Chirayil, T., Janauer, G., and Zavalij, P., Solid State Ionics, 75 (1995) 257.
16. Zavalij, P., Whittingham, M. S., Boylan, E. A., Pecharsky, V. K., and Jacobson, R. A., Z. Kryst, 211 (1996) 464.
17. Chirayil, T., Zavalij, P., and Whittingham, M. S., Solid State Ionics, 84 (1996) 163.
18. Chirayil, T., Zavalij, P., and Whittingham, M. S., J. Electrochem. Soc, 143 (1996) L193.
19. Chirayil, T. A., Zavalij, P. Y., and Whittingham, M. S., Chem. Commun., (1996) in press.
20. Nazar, L. F., Personal Communication, (1996)
21. Boylan, E. A., Chirayil, T., Hinz, J., Zavalij, P., and Whittingham, M. S., Solid State Ionics, 90 (1996)1.
22. Riou, D. and Férey, G., J. Solid State Chem., 120 (1995) 137.
23. Riou, D. and Férey, G., Inorg. Chem., 34 (1995) 6250.
24. Riou, D. and Férey, G., J. Solid State Chem., 124 (1996) 151.
25. Nazar, L. F., Koene, B. E., and Britten, J. F., Chem. Mater., 8 (1996) 327.
26. Zhang, Y., O'Connor, C. J., Clearfield, A., and Haushalter, R. C., Chem. Mater., 8 (1996) 595.
27. Zhang, Y., Haushalter, R. C., and Clearfield, A., J. Chem. Soc, Chem. Commun., (1996) 1055.
28. Zhang, Y., DeBord, J. R. D., O'Connor, C. J., Haushalter, R. C., Clearfield, A., and Zubieta, J., Angew. Chem. Int. Ed. Engl., 35 (1996) 989.
29. Chen, R., Zavalij, P., and Whittingham, M. S., Chem Mater, 8 (1996) 1275.
30. Chen, R., Chirayil, T., and Whittingham, M. S., Proceedings of the 10th International Symposium on Solid State Ionics, Singapore, December 1995. Solid State Ionics, 86–88 (1996) 1.
31. Pernet, M., Joubert, J. C., and Ferrand, B., Solid State Communications, 16 (1975) 503.
32. Chen, R., Zavalij, P. Y., and Whittingham, M. S., Chem. Mater., (1997) in press.
33. Shannon, R. D. and Calvo, C., J. Solid State Chem., 6 (1973) 538.
34. Zhang, F., Zavalij, P. Y., and Whittingham, M. S., Mater. Res. Bull., (1997) in press.
35. Galy, J., J. Solid State Chem., 100 (1992) 229.
36. Zhang, F., Zavalij, P. Y., and Whittingham, M. S., This volume, (1997)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed