Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T21:01:17.838Z Has data issue: false hasContentIssue false

Hydrothermal Synthesis of Alumina Pillared Layered α- Zirconium Phosphate

Published online by Cambridge University Press:  28 February 2011

Josefa Mérida-Robles
Affiliation:
Departamento de Química Inorgánica, Cristalografia y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Pascual Olivera-Pastor
Affiliation:
Departamento de Química Inorgánica, Cristalografia y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Antonio Jiménezlópez
Affiliation:
Departamento de Química Inorgánica, Cristalografia y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Enrique Rodriguez-Castellón
Affiliation:
Departamento de Química Inorgánica, Cristalografia y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Get access

Abstract

A new strategy to prepare alumina pillared α-zirconium phosphate with enhanced surface area and narrow pore size distribution is reported. The required precursor, a highly expanded single phase intercalate, is obtained in two steps. In the first one, the oligomeric solution of aluminium, prepared by dissolving aluminium in a solution of A1C13 at 95°C, is contacted with colloidal α-zirconium phosphate under reflux, in the presence of fluoride. Subsequently, the resulting intercalation compound is treated again with a diluted solution of fluoride under hydrothermal conditions at 200°C. It is thought that fluoride ions complex aluminium monomers present in the pillaring solutions, and remove aluminium from the external surface of the phosphate. The pillared materials obtained by calcination in the range 400-600°C present BET surface areas between 184-140 m2g−1 and basal spacings between 17.3-15.4 Å. These results contrast with those reported using classical methods, which systematically lead to materials with BET surface areas <80m2g−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clearfield, A. and Roberts, B.D., Inorg. Chem. 27, 3237 (1988).Google Scholar
2. Rodríguez-Castellón, E., Olivera-Pastor, P., Maireles-Torres, P. and JiménezLópez, A., J. Phys. Chem., in press.Google Scholar
3. Olivera-Pastor, P., Maza-Rodriguez, J., Maireles-Torres, P., Rodríguez-Castellón, E. and Jiménez-López, A., J. Mater. Chem. 4, 179 (1994).Google Scholar
4. Alberti, G. and Torracca, E., J. Inorg. Nucl. Chem. 30, 317 (1968).Google Scholar
5. Alberti, G., Casciola, M. and Costantino, U., J. Colloid Interface Sci. 107, 256 (1985).Google Scholar
6. Fu, G., Nazar, L.F. and Bain, A.D., Chem. Mater. 3, 602 (1991).Google Scholar
7. Purnell, J.H. in Multifunctional Mesoporous Inorganic Solids, edited by Sequeira, C.A.C. and Hudson, M.J. (Kluwer academic Publishers, Amsterdam, 1993) pp. 273287.Google Scholar
8. Cranston, R.W. and Inkley, F.A., Adv. Catal. 9, 143 (1957).Google Scholar
9. Gregg, S.J. and Sing, K.S.W., Adsorption Surface Area and Porosity 2nd ed. (Academic Press, Orlando).Google Scholar