Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T08:18:48.843Z Has data issue: false hasContentIssue false

Hydrolysis of Aluminum -Are All Gels Created Equal?

Published online by Cambridge University Press:  28 February 2011

T. E. Wood
Affiliation:
Ceramic Technology Center, Science Research Laboratory, and Analytical and Properties Research Laboratory, Building 201–4N-01, 3M Center, St. Paul, MN 55144
A. R. Siedle
Affiliation:
Ceramic Technology Center, Science Research Laboratory, and Analytical and Properties Research Laboratory, Building 201–4N-01, 3M Center, St. Paul, MN 55144
J. R. Hill
Affiliation:
Ceramic Technology Center, Science Research Laboratory, and Analytical and Properties Research Laboratory, Building 201–4N-01, 3M Center, St. Paul, MN 55144
R. P. Skarjune
Affiliation:
Ceramic Technology Center, Science Research Laboratory, and Analytical and Properties Research Laboratory, Building 201–4N-01, 3M Center, St. Paul, MN 55144
C. J. Goodbrake
Affiliation:
Ceramic Technology Center, Science Research Laboratory, and Analytical and Properties Research Laboratory, Building 201–4N-01, 3M Center, St. Paul, MN 55144
Get access

Abstract

The nuclearity and structure of aluminum cations generated by the hydrolysis of aluminum salt solutions depends markedly on the method of preparation. This speciation affects not only the thermochemistry of processes leading to ceramics, but the microstructures of the ceramics themselves. A brief review of aluminum ion hydrolysis is presented along with a study of the thermal evolution of gels derived from aluminum salt solutions via several different hydrolysis methods. The observation of 5 - coordinate aluminum in a bulk transition alumina by MAS-NMR is reported. A new, high defect precursor of η-alumina dubbed “high-5 alumina” is described and the far reaching implications of this discovery are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Birchall, J. D. in Fabrication Science 3, edited by Taylor, D. (Brit. Ceram. Soc. 33, Shelton, Stoke-on-Trent, England 1983) pp 5162;Google Scholar
1a Sacks, M. D., Tseng, T., and Lee, S. Y., Am. Ceram. Soc. Bull. 63 (2), 301310 (1984);Google Scholar
1b Blendell, J. E., Bowen, H. K., and Coble, R. L., ibid., 63 (6), 797– 802 (1984);Google Scholar
1c Ritter, G. W., II, U. S. Patent No. 4 512 913 (23 April 1985);Google Scholar
1d Hayes, J. C., Mcgrath, D., and Haensel, V., U. S. Patent 3 340 205 (5 September 1967).Google Scholar
2. Komameni, S., Roy, R., Fyfe, C., and Kennedy, G. J., J. Am. Ceram. Soc. 68, C–243C-245 (1985).Google Scholar
3. Siedle, A. R., Wood, T. E., Brostrom, M. L., Koskenmaki, D. C., Montez, B., and Oldfield, E., J. Amer. Chem. Soc. 111, 1665 (1989).Google Scholar
4. Johnson, D. D. and Sowman, H. G., in Engineered Materials Handbook Volumel, edited by Dostal, C. A. (ASM Intemational, Metals Park, Ohio, 1987), pp. 6065.Google Scholar
5. Brown, P. L., Sylva, R. N., Batley, G. E., and Ellis, J., J. Chem. Soc. Dalton Trans. 1985, 1967;Google Scholar
5a Aveston, J., J. Chem. Soc. 1965, 4438;Google Scholar
5b Brosset, C., Biedermann, G., and Sillen, L. G., Acta Chem. Scand. 8, 1917 (1954).Google Scholar
6. Rausch, W. V. and Bale, H. D., J. Chem. Phys. 40, 3391 (1964);Google Scholar
6a Ruff, J. K. and Tyree, S. Y., J. Amer. Chem. Soc. 80, 1523 (1958);Google Scholar
6b Bottero, J. Y., Tchoubar, D., Cases, J. M., and Flessinger, F., J. Phys. Chem. 86, 3667 (1982).Google Scholar
7. Aveston, J., J. Chem. Soc. 1965, 4438.Google Scholar
8. Matijevic, E., Mathai, K. G., Ottewill, R. H., and Kerker, M., J. Phys. Chem. 65, 826 (1961).Google Scholar
9. Bertsch, P. M., Layton, W. J., and Bamhisel, R. I., Soil Sci. Soc. Am. J. 50, 1449 (1986);Google Scholar
9a Turner, R. C., Can. J. Chem. 54, 1910 (1976);Google Scholar
9b ibid., 47, 2521 (1969).Google Scholar
10. Waters, D. N. and Henty, M. S., J. Chem. Soc. Dalton 1977, 243.Google Scholar
11. Akitt, J. W. and Elders, J. M., J. Chem. Soc. Dalton Trans. 1988, 1347;Google Scholar
11a Akitt, J. W., Greenwood, N. N., and Lester, G. D., J. Chem. Soc. (A) 1969, 803;Google Scholar
11b Akitt, J. W. and Farthing, A., J. Magn. Reson. 32, 345 (1978);Google Scholar
11c Akitt, J. W. and Mann, B. E., ibid., 44, 584 (1981);Google Scholar
11d Akitt, J. W. and Farthing, A., J. Chem. Soc. Dalton 1981, 1617;Google Scholar
11e Akitt, J. W., Greenwood, N. N., Khandelwal, B. L., and Lester, G. D., ibid., 1972, 604;Google Scholar
11f Akitt, J. W. and Farthing, A., ibid., 1981, 1606.Google Scholar
12. Akitt, J. W. and Farthing, A., J. Chem Soc. Dalton 1981, 1624;Google Scholar
12a Akitt, J. W., Elders, J. M., Fontaine, X. L. R., and Kundu, A. K., ibid., 1989, 1889.Google Scholar
13. Bottero, J. Y., Cases, J. M., Fiessinger, F., and Poirier, J. E., J. Phys. Chem. 84, 2933 (1980).Google Scholar
14. Bertch, P. M., Bamhisel, R. I., Thomas, G. W., Layton, W. J., and Smith, S. L., Anal. Chem. 58, 2583 (1986);Google Scholar
14a Bertsch, P. M., Layton, W. J., and Barnhisel, R. I., Soil Sci. Soc. Am. J. 50, 1449 (1986);Google Scholar
14b Bertsch, P. M., Thomas, G. W., and Barnhisel, R. I., ibid., 50, 825 (1986).Google Scholar
15. Thompson, A. R., Kunwar, A. C., Gutowsky, H. S., and Oldfield, E., J. Chem. Soc. Dalton Trans. 1987, 2317.Google Scholar
16. Wood, T. E., Hill, J. R., Bergmark, L., and Skarjune, R. P., presented at the Third International Conference on Ultrastructure Processing of Ceramics, Glasses and Composites, San Diego, CA (unpublished)Google Scholar
16a and the 1989 International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 1989 (unpublished).Google Scholar
17. Baes, C. F. Jr. and Mesmer, R. E., The Hydrolysis of Cations, (John Wiley and Sons, Inc., New York, 1976), pp.112123;Google Scholar
17a Alwitt, R. S., in Oxides and Oxide Films Volume 4, edited by Diggle, J. W. and Vijh, A. K. (Marcel Dekker, Inc., New York, 1976), pp.168254.Google Scholar
18. Karlik, S. J., Tarien, E., Elgavish, G. A., and Eichhorn, G. L., Inorg. Chem. 22, 525 (1983) and references therein.Google Scholar
19. Hinton, J. F., and Briggs, R. W., in NMR and the Periodic Table, edited by Harris, R. K. and Mann, B. E. (Academic Press, New York, 1978), pp. 279285.Google Scholar
20. Johansson, G., Lundgren, G., Sillen, L. G., and Soderquist, R., Acta Chem. Scand. 14, 769 (1960);Google Scholar
20a Johansson, G., ibid., 14, 771 (1960).Google Scholar
21. Johansson, G., Acta Chem. Scand. 16, 403 (1962).Google Scholar
22. Akitt, J. W. and Enders, J. M., J. Chem. Soc. Dalton Trans. 1988, 1347.Google Scholar
23. Yoldas, B. E., Am. Ceram. Soc. Bull. 54 286 (1975);Google Scholar
23a J. Mater. Sci. 10 1856 (1975);Google Scholar
23b ibid., 14 1843 (1979);Google Scholar
23c Johnson, D. W. Jr., Am. Ceram. Soc. Bull. 64 1597 (1985).Google Scholar
24. Olson, W. L. and Bauer, L. J., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Prac. 73, Pittsburgh, PA 1986) pp. 187193.Google Scholar
25. Nazar, L. F. and Klein, L. C., J. Am. Ceram. Soc. 71, C-85 (1988).Google Scholar
26. Bellan, A. and Deneke, K., U. S. Patent No. 3 891 745 (24 June 1975).Google Scholar
27. Birchall, J. D., Trans. J. Brit. Ceram. Soc. 82, 143 (1983);Google Scholar
27a Seufert, L. E., U. S. Patent No. 3 808 015 (30 April 1974).Google Scholar
28. Brace, R. and Matijevic, E., J. Inorg. Nucl. Chem. 35, 3691 (1973);Google Scholar
28a Kato, E., Daimon, K., and Nanbu, M., J. Am. Ceram. Soc. 64, 436 (1981).Google Scholar
29. Utiyama, M., Hattori, H., and Tanabe, K., Bull. Chem. Soc. Jpn. 54, 2521 (1981).Google Scholar
30. Nazar, L., presented at the 1989 International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 1989 (unpublished).Google Scholar
31. Alemany, L. B. and Kirker, G. W., J. Amer. Chem. Soc. 108, 6158 (1986);Google Scholar
31a Irwin, A. D., Holmgren, J. S., and Jonas, J., J. Mater. Sci. 23, 2908 (1988).Google Scholar
32. Mastikhin, V. M., Krivoruchko, O. P., Zolotovskii, B. P., and Buyanov, R. A., React. Kinet. Catal. Lett. 18, 117 (1981);Google Scholar
32a Kotsarenko, N. S., Mastikhin, V. M., Mudrakovskii, I. L., and Shmachkova, V. P., React. Kinet. Catal. Lett. 30, 375 (1986);Google Scholar
32b Walter, T. H. and Oldfield, E., J. Phys. Chem. 93, 6744 (1989).Google Scholar
33. Verwey, E. J. W., Z. Krist. 91, 65 (1935);Google Scholar
33a Zagodzinski, H. and Saalfeld, H., Z. Krist. 110, 197 (1958).Google Scholar