Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:21:06.828Z Has data issue: false hasContentIssue false

Hydrogen Passivation and Reactivation of DX Centers in Se-Doped and Si-Doped AlGaAs - - A Comparison

Published online by Cambridge University Press:  03 September 2012

G. Roos
Affiliation:
Department of Electrical Engineering, Solid State Electronics Laboratory, Stanford University, Stanford, CA94305 Xerox Palo Alto Research Center, Palo Alto, CA 94304
N. M. Johnsons
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
C. Herring
Affiliation:
Department of Applied Physics, Stanford University, Stanford, CA 94305
J. S. Harris Jr
Affiliation:
Department of Electrical Engineering, Solid State Electronics Laboratory, Stanford University, Stanford, CA94305
Get access

Abstract

The effect of hydrogenation on DX centers was evaluated for both Si- and Se-doped AlxGa1-xAs (x=0.26 and 0.23). MBE-grown AIGaAs:Si and MOCVD-grown AIGaAs:Se epilayers were hydrogenated with either monatomic hydrogen or deuterium from a remote plasma at 250°C for 1h. The passivation and subsequent reactivation kinetics were studied with C-V and DLTS techniques. Reactivation was investigated in the space-charge layer of Schottky diodes under different bias conditions. While the Group VI and Group IV deep donors respond similarly to passivation, they display significantly different reactivation kinetics, with thermal dissociation energies of 1.5 eV and 1.2 eV for Se-H and Si-H, respectively. These values are close to the energies previously determined for reactivation of the Si and Se shallow donors in both AIGaAs and GaAs. Therefore, they are not significantly dependent on the Al concentration (x < 0.30) even for donors residing on the As sublattice. Our results are consistent with the Chang-Chadi model of DX centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chevallier, J., Dautremont-Smith, W. C., Tu, C. W., and Pearton, S. J., Appl. Phys. Lett. 47, 108 (1985).CrossRefGoogle Scholar
2. Johnson, N. M., Burnham, R. D., Street, R. D., and Thornton, R. L., Phys. Rev. B 33, 1102 (1986).CrossRefGoogle Scholar
3. Nabity, J. C., Stavola, M., Lopata, J., Dautremont-Smith, W. C., Tu, C. W., and Pearton, S. J., Appl. Phys. Lett. 50, 921 (1987).Google Scholar
4. Mostefaoui, R., Chevallier, J., Jalil, A., Pesant, J. C., Tu, C. W., and Kopf, R. F., J. Appl. Phys. 64, 207 (1988).CrossRefGoogle Scholar
5. Pavesi, L., MArtin, D., and Reinhart, F. K., Appl. Phys. Lett. 55, 475 (1989).CrossRefGoogle Scholar
6. Jackson, G. S., Pan, N., Feng, M.S., Stillman, G. E., Holonyak, N., and Burnham, R. D., Appl. Phys. Lett. 51, 1629 (1987).Google Scholar
7. Jackson, G. S., Hall, D. C., Guido, L.J., Plano, W. E., Pan, N., Holonyak, N., and Stillman, G. E., Appl. Phys. Lett. 52, 691 (1988).CrossRefGoogle Scholar
8. Constant, E., Electron. Lett. 23, 841 (1987).Google Scholar
9. Mooney, P. M., J. Appl. Phys. 67, R1 (1990).CrossRefGoogle Scholar
10. Pearton, S. J., Dautremont-Smith, W. C., Chevallier, J., Tu, C. W., and Cummings, K. D., J. Appl. Phys. 59, 2821 (1986).CrossRefGoogle Scholar
11. Cho, H. Y., Kim, E. K., Min, S.-K., Chang, K. J., and Lee, C., J. Appl. Phys. 68, 5077 (1990).Google Scholar
12. Roos, G., Johnson, N. M., Herring, C., and Harris, J. S., Appl. Phys. Lett. 59, 461 (1991).Google Scholar
13. Pearton, S. J., Abernathy, C. R., and Lopata, J., Appl. Phys. Lett. 59, 3571 (1991).Google Scholar
14. Leitch, A. W. R., Prescha, T., and Weber, J., Phys. Rev. B 44, 1375 (1991).Google Scholar
15. Leitch, A. W. R., Zundel, T., Prescha, T., and Weber, J., Mat. Sci. Forum vols. 83 – 87, Trans Tech Publ. eds. Davies, G., DeLeo, G., and Stavola, M., 21 (1992).Google Scholar
16. Roos, G., Johnson, N. M., Herring, C., and Harris, J. S., Mat. Sci. Forum vols. 83 – 87, Trans Tech Publ. eds. Davies, G., DeLeo, G., and Stavola, M., 605 (1992).Google Scholar
17. Roos, G., Johnson, N. M., Herring, C., Chung, H. F., Thornton, R. L., and Harris, J. S. Jr, Proc. of ECS SotAPoCS, Phoenix, (1991), in press.Google Scholar
18. Johnson, N. M., chpt. 7 in Hydrogen in Semiconductors, vol. eds. Pankove, J. I. and Johnson, N. M., Semiconductors and Semimetals Vol. 34 (Academic, San Diego, 1991).Google Scholar
19. Zundel, T. and Weber, J., Phys. Rev. B 39, 13549 (1989).CrossRefGoogle Scholar
20. Zhu, J., Johnson, N. M., and Herring, C., Phys. Rev. B 41, 12354 (1990).Google Scholar
21. Chadi, D. J. and Chang, K. J., Phys. Rev. B 39, 10366 (1989).CrossRefGoogle Scholar
22. Chevallier, J., Clerjaud, B., and Pajot, B., Ref. 18, Chpt. 13.Google Scholar
23. Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar