Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T12:48:43.480Z Has data issue: false hasContentIssue false

Hydrogen Pairing on Si(100)-(2×1): A Site-Blocking Study

Published online by Cambridge University Press:  22 February 2011

Wolf Widdra
Affiliation:
Department of Chemical Engineering and Center for Quantized Electronic Structures (QUEST), University of California, Santa Barbara, CA 93106
W. Henry Weinberg
Affiliation:
Department of Chemical Engineering and Center for Quantized Electronic Structures (QUEST), University of California, Santa Barbara, CA 93106
Get access

Abstract

The thermal desorption of hydrogen from a Si(100)-(2×l) monohydride surface has been reported previously to follow first-order kinetics. Pairing of hydrogen atoms on a Si-Si dimer prior to desorption is most likely the cause of this unusual behavior. To examine the degree of hydrogen pairing at various surface temperatures, this study examines the blocking of adsorption sites by hydrogen for subsequent acetylene adsorption. Temperature programmed desorption and Auger electron spectroscopy were used to measure the absolute saturation coverage of acetylene for various coverages of preadsorbed atomic deuterium. The observed linear decrease in saturation coverage of acetylene with deuterium coverage, for atomic deuterium adsorption between 550 and 150 K, indicates that deuterium is paired on Si-Si dimers. The observation that pairing occurs even at 150 K suggests that the diffusion of chemisorbed hydrogen is not responsible for pairing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] See e.g. Christmann, K., Surf. Sci. Rep. 9, 1 (1988); H. Froitzheim, in The chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol.5, Eds. D.A. King and D.P. Woodruff (Elsevier, Netherlands, 1988), p.183; J.A. Schaefer, Physica B, 170, 45 (1991); G.V. Hanson and R.I.G. Uhrberg, Surf. Sci. Rep. 9, 197 (1988); J.J. Boland, Adv. in Phys., 42, 129 (1993).Google Scholar
[2] Sinniah, K., Sherman, M.G., Lewis, L.B., Weinberg, W.H., Yates, J.T. Jr., and Janda, K.C., Phys. Rev. Lett. 62, 567 (1989).Google Scholar
[3] Wise, M.L., Koehler, B.G., Gupta, P., Coon, P.A., and George, S.M., Surf. Sci. 258, 166 (1991).Google Scholar
[4] Höfer, U., Li, L., and Heinz, T.F., Phys. Rev. B 45, 9485 (1992).CrossRefGoogle Scholar
[5] D'Evelyn, M.P., Cohen, S.M., Rouchouze, E., and Yang, Y.L., J. Chem. Phys. (in press).Google Scholar
[6] Nachtigall, P., Jordan, K.D., Janda, K.C., J. Chem. Phys. 95,8652 (1991).Google Scholar
[7] Boland, J.J., Phys. Rev. Lett. 67, 1539 (1991).Google Scholar
[8] We have estimated the coverage by counting the adsorbed hydrogen atoms in the given STM images.Google Scholar
[9] Boland, J.J., J. Vac. Sci. Techn. A 10, 2458 (1992).Google Scholar
[10] Mayne, A.J., Cataldi, T.R.I., Knall, J., Avery, A.R., Jones, T.S., Pinheiro, L., Hill, H.A.O., Briggs, G.A.D., Pethica, J.B., and Weinberg, W.H., Faraday Discuss. 94, 199 (1992).Google Scholar
[11] Huang, C., Widdra, W., Wang, X.S., and Weinberg, W.H., J. Vac. Sci. Technol. A 11, 2250 (1993).Google Scholar
[12] Cheng, C.C., Wallace, R.M., Taylor, P.A., Choyke, W.J., and Yates, J.T. Jr., J. Appl. Phys. 67, 3693 (1990).CrossRefGoogle Scholar
[13] Cheng, C.C., Taylor, P.A., Wallace, R.M., Gutleben, H., Clemen, L., Colalanni, M.L., Chen, P.J., Weinberg, W.H., Choyke, W.J., and Yates, J.T. Jr., Thin Solid Films 225, 196 (1993).Google Scholar
[14] Bozack, M.J.. Choyke, W.J., Muehlhoff, L., and Yates, J.T. Jr., J. Appl. Phys. 60, 3750 (1986).Google Scholar
[15] Clemen, L., Wallace, R.M., Taylor, P.A., Dresser, M.J., Choyke, W.J., Weinberg, W.H., and Yates, J.T. Jr., Surf. Sci. 268,205 (1992).Google Scholar
[16] Taylor, P.A., Wallace, R.M., Cheng, C.-C., Dresser, M.J., Joyke, W.J., Weinberg, W.H., and Yates, J.T. Jr., J. Am. Chem. Soc. 114,6754 (1992).Google Scholar
[17] Widdra, W., Maboudian, R., Yi, S.I., Briggs, G.A.D., and Weinberg, W.H. (in preparation).Google Scholar
[18] Schaefer, J.A., Stucki, F., Anderson, J.A., Lapeyre, G.J., and Göpel, W., Surf. Sci. 140, 207 (1984).CrossRefGoogle Scholar
[19] D'Evelyn, M.P., Yang, Y.L., and Sutcu, L.F., J. Chem. Phys. 96, 852, (1992)CrossRefGoogle Scholar
[20] Reider, G.A., Höfer, U., and Heinz, T.F., Phys. Rev. Lett. 66, 1994 (1991).CrossRefGoogle Scholar
[21] Wu, C.J. and Carter, E.A., Phys. Rev. B 46,4651 (1992).Google Scholar
[22] Vittadini, A., Selloni, A., and Casarin, M., Surf. Sci. Lett. 289,625 (1993).Google Scholar
[23] Chabal, Y.J., Surf. Sci. 168,594 (1986).Google Scholar