Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T21:15:24.925Z Has data issue: false hasContentIssue false

Hydrogen Ordering and Metal-Semiconductor Transitions in Rare-Earth Hydrides

Published online by Cambridge University Press:  20 February 2017

P. Vajda*
Affiliation:
Laboratoire des Solides Irradiés, Ecole Polytechnique, F-91128 Palaiseau, France
Get access

Abstract

After an introduction to the rare earth – hydrogen phase diagram, stressing the often broad existence range of the solid solution (α), dihydride (β) and trihydride (γ) phases, we are describing in detail the fluorite-type dihydride and its superstoichiometric composition, RH2+x, where the x atoms occupy the available octahedral interstitial sites. It is shown how these additional x atoms interact with each other to form ordered H superlattices (sometimes distorting the cubic CaF2 structure) and how the latter influences the electronic structure of the systems modifying the magnetic properties and/or leading to metal-semiconductor transitions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vajda, P., «Hydrogen in Rare Earth Metals, including RH2+x Phases», in Handbook on the Physics and Chemistry of Rare Earths, ed. by Gschneidner, K.A. and Eyring, L. (Elsevier), vol.20 (1995).Google Scholar
2. Udovic, T.J., Huang, Q., Rush, J.J., MRS-Symp. Proc. vol. 513, 197 (1998).Google Scholar
3. André, G., Blaschko, O., Schwarz, W., Daou, J.N., Vajda, P., Phys. Rev. B 46, 8644 (1992).Google Scholar
4. Huang, Q., Udovic, T.J., Rush, J.J., Schefer, J., Anderson, I.S., J. All. Comp. 231, 95 (1995).Google Scholar
5. Sun, S.N., Wang, Y., Chou, M.Y., Phys. Rev. B 49, 6481 (1994).Google Scholar
6. Jensen, J. and Mackintosh, A.R., «Rare Earth Magnetism - Structure and Excitations», Clarendon (1991).Google Scholar
7. Vajda, P. and André, G., J. All. Comp. 326, 151 (2001).Google Scholar
8. Abeln, A., Rep. N° Jül.-2152, Jülich (1987).Google Scholar
9. Vajda, P., Daou, J.N., André, G., Phys. Rev. B 48, 6116 (1993).Google Scholar
10. Switendick, A.C., Sol. State Comm. 8, 1463 (1970);Google Scholar
Int. J. Quantum Chem. 5, 459 (1971).Google Scholar
11. Huiberts, J.N., PhD Thesis, Physics Dept., Vrije Univ. Amsterdam (1995).Google Scholar
12. Libowitz, G.G., Ber. Bunsenges. Phys. Chem. 76, 837 (1972).Google Scholar
13. Shinar, J., Dehner, B., Beaudry, B.J., Peterson, D.T., Phys. Rev. B 37, 2066 (1988);Google Scholar
Shinar, J., Dehner, B., Barnes, R.G., Beaudry, B.J., Phys. Rev. Lett. 64, 563 (1990).Google Scholar
14. Vajda, P. and Daou, J.N., Phys. Rev. Lett. 66, 3176 (1991);Google Scholar
Vajda, P., J. All. Comp. 231, 170 (1995).Google Scholar
15. Schoenes, J., Rode, M., Schröter, H., Zur, D., Borgschulte, A., J. All. Comp. 404/406, 453 (2005);Google Scholar
Schoenes, J., Racu, A.-M., Rode, M., Weber, S., J. All. Comp. 446/447, 562 (2007).Google Scholar
16. Hayoz, J., Bovet, M., Pillo, Th., Schlapbach, L., Aebi, P., Appl. Phys. A: Mater. Sci. Process. 71, 615 (2000);Google Scholar
Hayoz, J., Koitzsch, C., Bovet, M., Naumovic, D., Schlapbach, L., Aebi, P., Phys. Rev. Lett. 90, 196804 (2003).Google Scholar
17. Schöllhammer, G., Wolf, W., Herzig, P., Yvon, K., Vajda, P., J. All. Comp. to be publ. 2009.Google Scholar
18. Palasyuk, T., Tkacz, M., Vajda, P., Sol. State Comm. 135, 226 (2005).Google Scholar
19. Ohmura, A., Machida, A., Watanuki, T., Aoki, K., Nakano, S., Takemura, K., Phys. Rev. B 73, 104105 (2006);Google Scholar
Ohmura, A., Machida, A., Watanuki, T., Aoki, K., Nakano, S., Takemura, K., J. All. Comp. 446/447, 598 (2007).Google Scholar