Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T05:09:10.442Z Has data issue: false hasContentIssue false

Hydrogen and Lithium Passivation of Gold in Silicon: A Comparative Study

Published online by Cambridge University Press:  26 February 2011

E. ö. Sveinbjörnsson
Affiliation:
Department of Solid State Electronics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
S. Kristjansson
Affiliation:
Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
O. Engström
Affiliation:
Department of Solid State Electronics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
H. P. Gislason
Affiliation:
Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
Get access

Abstract

We report studies of passivation of the gold center in silicon by hydrogen and lithium using deep level transient spectroscopy (DLTS), capacitance voltage (CV) profiling and secondary ion mass spectroscopy (SIMS). Both lithium and hydrogen are able to remove the electrical activity of the gold center from the silicon band gap but the passivation mechanisms are different. In the case of lithium the passivation is most likely due to a Coulomb attraction between lithium donors Li+ and gold acceptors Au. No complex formation is observed between Li+ and Au0. In contrast, hydrogen is able to passivate the gold center without the need of opposite charge states of the species involved. Two Au-H complexes are observed, one (G) electrically active, and another (PA) passive. Based on the annealing kinetics of these complexes we propose that the active complex is a Au-H pair and that the passive complex contains two H atoms (Au-H2).

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S. J., Corbett, J. W. and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer, Berlin-Heidelberg, 1992).Google Scholar
2. Gilles, D., in Defect Engineering in Semiconductor Growth, Processing and Device Technology edited by Ashok, S., Chevallier, J., Sumino, K., and Weber, E., Mater. Res. Soc. Symp. Proc. Vol. 262, 917 (1992).Google Scholar
3. Sveinbjörnsson, E. Ö. and Engström, O., in reference 2, p. 501.Google Scholar
4. Sadoh, T., Nakashima, H., and Tsurushima, T., J. Appl. Phys. 72, 520 (1992).Google Scholar
5. Sveinbjörnsson, E. Ö., Andersson, G. I. and Engström, O., Phys. Rev. B 49, 7801 (1994).Google Scholar
6. Sadoh, T., Watanabe, M., Nakashima, H., and Tsurushima, T., J. Appl. Phys. 75, 3978 (1994).Google Scholar
7. Yang, B. H., Gislason, H. P., and Linnarsson, M., Phys. Rev. B 48, 12345 (1993).Google Scholar
8. Egilsson, T., Gislason, H. P., and Yang, B. H., Phys. Rev. B 50,1996 (1994).Google Scholar
9. Pell, E. M., Phys. Rev. 119, 1222 (1960).Google Scholar
10. Aggarwal, R. L. and Ramdas, A. K., Phys. Rev. 140, A 1246 (1965).Google Scholar
11. Sveinbjörnsson, E. Ö., Kristjansson, S. and Gislason, H. P., J. Appl. Phys. 77 (7) (1995, in press).Google Scholar
12. Lemke, H., Physica Status Solidi (a) 76, 223 (1983).Google Scholar
13. Alteheld, P., Greulich-Weber, S., Spaeth, J.-M., Overhof, H. and Höhne, M., Mater. Sci. Forum 143147, 1173 (1994).Google Scholar
14. Sveinbjörnsson, E. Ö. and Engström, O. (unpublished).Google Scholar
15. Pearton, S. J. and Tavendale, A. J., Phys. Rev. B 26,7105 (1982).Google Scholar
16. Williams, P. M., Watkins, G. D., Uftring, S., and Stavola, M., Pbvs. Rev. Lett. 70, 3816 (1993).Google Scholar