Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T07:12:33.428Z Has data issue: false hasContentIssue false

Hrem Study On The Interfacial Structure In Oxygen-Defective CaMnO3−x System

Published online by Cambridge University Press:  25 February 2011

H. Shibahara
Affiliation:
Department of Chemistry, Kyoto University of Education, Fushimi-ku, Kyoto 612, Japan
H. Taguch
Affiliation:
Department of Chemistry, Kyoto University of Education, Fushimi-ku, Kyoto 612, Japan Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700, Japan
Get access

Abstract

Electron diffraction and high resolution electron microscope observation for CaMnO3−x (x=0. 02 and 0. 05) showed unique features of the ordered structure. A coherent intergrowth of several phases with a long period in CaMnO3−x composed of extended perovekite units was observed. The relation in crystallography in the family of ordered perovskite related oxides in CaMnO3−x, which could help towards an understanding of magnetic properties and catalytic action of CaMnO3−x, is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Macchesney, J. B., Sherwood, R.C., and Potter, J.F., J. Chem. Phys. 43, 1907 (1965)CrossRefGoogle Scholar
2. Taguchi, H., Shimada, M. and Koizumi, M., J. Solid State Chem. 29, 221 (1979)Google Scholar
3. Negas, T. and Roth, R. S., J. Solid State Chem. 1, 409 (1970)CrossRefGoogle Scholar
4. Shibahara, H., J. Mater. Res. 6, No. 3, (1991)Google Scholar
5. Shibahara, H. and Hashimoto, H., in Proc. 7th Int. Conf. on Crystal Growth, Stuttgart, J. Cryst. Growth 65, 683 (1983)Google Scholar
6. Shibahara, H., J. Solid State Chem. 66 117(1987)Google Scholar
7. Shibahara, H.: J. Solid State Chem. 81, 40 (1989)Google Scholar
8. Shibahara, H., J. Solid State Chem. 69, 81 (1987)Google Scholar
9. Macchesney, J. B., Williams, H.J., Potter, J.F. and Sherwood, R.C., Phys. Rev. 164, 779(1967)Google Scholar
10. Poeppelmeier, K. R., Leonowicz, M. E., Scanion, J.C., Longo, J.M. and Yelon, W. B., J. Solid State Chem. 45, 71(1982)CrossRefGoogle Scholar
11. Taguchi, H., Nagano, M., Sato, T. and Shimada, M., J. Solid State Chem. 78, 312 (1989)Google Scholar
12. Wollan, E. O. and Koehker, W. C., Phys. Rev. 100, 545 (1955)Google Scholar
13. Kuroda, K., Fujie, N., Mizutani, N. and Kato, M., J. Chem. Soc. Jpn, 12, 1855 (1981)Google Scholar
14. Taguchi, H., Phys. Status Solidi A88, K79 (1985)Google Scholar
15. Gushee, B.E., Katz, L., and Ward, R., J. Amer. Chem. Soc. 79, 5601 (1957)CrossRefGoogle Scholar
16. Cowely, J.M. and Moodie, A.F., Acta Crystallogr. 10, 609 (1957)Google Scholar
17. Goodman, P. and Moodie, A.F., Acta Crystallogr. Sect. A30, 280, (1974)Google Scholar
18. Relier, A., Jefferson, A., Thomas, J.M., Beyerlein, R. A. and Poeppelmeier, K. R., J. Chem. Soc. Commun., 1 379 (1982)Google Scholar
19. Relier, A., Thomas, J.M., Jefferson, F. R. S. D. A. and Uppal, M. K., Proc. R. Soc. Lond. A394, 223 (1984)Google Scholar