Skip to main content Accessibility help
×
Home

Hot Electron Relaxation in Quantum Wells

  • S. A. Lyon (a1)

Abstract

Hot electron relaxation in bulk semiconductors has been studied for several decades, but only through recent advances in crystal growth has it become possible to investigate the ther-malization of hot quasi-two-dimensional carriers in quantum wells. These same advances have opened the possibility of constructing various semiconductor devices which rely on hot electrons for their operation. We discuss experimental results on the energy relaxation of hot electrons in GaAs/AlGaAs quantum wells. The experiments make use of optical spectroscopy for determining the carrier distribution. In particular, steady-state hot photoluminescence measurements have been employed with modulation-doped quantum wells in order to minimally perturb the system by the photoexcited carriers. Both the relaxation of very energetic electrons and the cooling of a hot thermalized carrier distribution are considered. The quantum well results are compared to results from similar experiments with bulk GaAs.

Copyright

References

Hide All
1. By “hot carriers” we mean electrons or holes with kinetic energies well above the average thermal energy of the lattice, kTL. Ignoring questions of semantics, we will not in general asssume that the carriers are in an equilibrium distribution, and “hot” does not imply that their distribution can be characterized by a carrier temperature.
2. Ridley, B. K. and Watkins, T. B., Proc. Phys. Soc. (London) 78, 293 (1961);
Hilsum, C., Proc. IRE 50, 185 (1962).
3. Gunn, J. B., Solid State Commun. 1, 88 (1963).
4. Ruch, J. G., IEEE Trans. Electron Devices, ED–19, 652 (1972).
5. Hammond, R. B., Physica 134B, 475 (1985)
6. Shannon, J. M., IEE J. Solid State Electron Devices 3, 142 (1979);
Shannon, J. M. and Gill, A., Electron Lett. 17, 621 (1981).
7. Malik, R. J., Hollis, M. A., Eastman, L. F., Woodward, D. J., Wood, C. E. C., and AuCoin, T. R., Proc. of Conference on Active Microwave Devices (Cornell University, Ithaca, NY, 1981), p. 87.
8. Heilblum, M., Thomas, D. C., Knoedler, C. M., and Nathan, M. I., Appl. Phys. Lett. 47, 1105, (1985).
9. Hayes, J. R., Levi, A. F. J., and Wiegmann, W., Electron. Lett. 20, 851 (1984).
10. Levi, A. F. J., Hayes, J. R., Platzman, P. A., and Wiegmann, W., Phys. Rev. Lett. 55, 2071 (1985).
11. Heilblum, M., Nathan, M. I., Thomas, D. C., and Knoedler, C. M., Phys. Rev. Lett. 55, 2200 (1985).
12. See for example, Lyon, S.A., The Physics of VLSI, Proceedings of the International Conference, Palo Alto, CA, edited by Knights, J.C. (AIP Conference Proceedings, No. 122) p. 8 (1984).
13. For a review of the properties of electrons in two-dimensional systems see Ando, T., Fowler, A. B., and Stern, F., Rev. Mod. Phys. 54, 437 (1982).
14. Dingle, R., Stornier, H., Gossard, A., and Wiegmann, W., Appl. Phys. Lett. 33, 665 (1978).
15. Lyon, S. A., J. Lumin. 35, 121 (1986).
16. Shah, J., IEEE J. Quantum Electron. QE–33, 1728 (1986).
17. Here we use “thermalized” to mean that the carriers are in equilibrium with one another, ie. in a Fermi-Dirac or Boltzmann distribution, but not necessarily at the lattice temperature.
18. Shah, J. and Leite, R. C. C., Phys. Rev. Lett. 22, 1304 (1969).
19. Conwell, E. M., High Field Transport in Semiconductors, Solid State Physics Suppl. 9, ed. by Seitz, F., Turnbull, D., and Ehrenreich, H., (Academic Press, New York, 1967).
20. Bauer, G. and Kahlert, H., Phys. Rev. B5, 566 (1972).
21. Mooradian, A. and Wright, G. B., Solid State Commun. 4, 431 (1966).
22. Yang, C. H., Carlson-Swindle, J. M., Lyon, S. A., and Worlock, J. M., Phys. Rev. Lett. 55, 2359 (1985).
23. Ridley, B. K., J. Phys. C15, 5899 (1982).
24. Riddoch, F. A. and Ridley, B. K., J. Phys. C16, 6971 (1983).
25. Shah, J., Pinczuk, A., Störnier, H. L., Gossard, A. C., and Wiegmann, W., Appl. Phys. Lett. 42, 55 (1983); 44, 322 (1984).
26. Shah, J., Pinczuk, A., Gossard, A. C., and Wiegmann, W., Phys. Rev. Lett. 54, 2045 (1985); Physica 134B, 174 (1985).
27. Ryan, J. F., Taylor, R. A., Tuberfield, A. J., Maciei, A., Worlock, J. M., Gossard, A. C., and Wiegmann, W., Phys. Rev. Lett. 53, 1841 (1984);
Ryan, J. F., Physica 134B, 403 (1985).
28. Kash, K., Shah, J., Block, D., Gossard, A. C., and Wiegmann, W., Physica 134B, 189 (1985).
29. Leheny, R. F., Jagdeep, Shah, Fork, R. L., Shank, C.V., Migus, A., Solid State Commun. 31, 809 (1979).
30. von der Linde, D. and Lambrich, R., Phys. Rev. Lett. 42, 1090 (1979).
31. Yang, C. H. and Lyon, S. A., Physica 134B, 309 (1985).
32. Hess, K., Holonyak, N. Jr, Ladig, W. D., Vojak, B. A., Coleman, J. J., and Dapkus, P. D., Solid State Commun. 34, 749 (1980).
33. Price, P. J., Physica 134B, 164 (1985).
34. Yang, C. H. and Lyon, S. A., (to be published).
35. Lyon, S. A., Int. Conf. Superlattices, Microstructures and Microdevices, Göteborg, 1986 (to be published).
36. Kash, J. A., Tsang, J.C., and Hvam, J. M., Phys. Rev. Lett. 54, 2151 (1985);
Tsang, J. C., Kash, J. A., and Jha, S. S., Physica 134B, 184 (1985).
37. von der Linde, D., Kuhl, J., and Klingenberg, H., Phys. Rev. Lett. 44, 1505 (1980).
38. Jagdeep, Shah, Leite, R. C. C., and Scott, J. F., Solid State Commun. 8, 1089 (1970).
39. Mattos, J. C. V. and Leite, R. C. C., Solid State Commun. 12, 465 (1973).
40. Gallego Lluesma, E., Mendes, G., Arguello, C. A., and Leite, R. C. C., Solid State Commun. 14, 1195 (1974).
41. Riddoch, F. A. and Ridley, B. K., Physica 134B, 342 (1985).
42. Worlock, J. M. Proc. of the Int. Conf. Phonon Physics, eds. Kollar, J., Kroo, N., Men-yhard, N., and Siklos, T. (World Scientific Publishing, Singapore, 1985) p. 506.
43. Mirlin, D. N., Karlik, I.Ya., Nikitin, L. P., Reshina, I. I., and Sapega, V. F., Solid State Commun. 37, 757 (1980).
44. Oudar, J. L., Migus, A., Hulin, D., Grillon, G., Etchpare, J., and Antonetti, N., Phys. Rev. Lett. 53, 384 (1985).
45. Oudar, J. L., Hulin, D., Migus, A., Antonetti, A., and Alexandre, F., Phys. Rev. Lett. 55, 2074 (1985).
46. Knox, W. H., Hirlimann, C., Miller, D. A. B., Shah, J., Chemia, D. S. and Shank, C. V., Phys. Rev. Lett. 56, 1191 (1986).
47. Knox, W. H., Downer, M. C., Fork, R. L., and Shank, C. V., Opt. Lett. 9, 552 (1986).
48. Yang, C. H. and Lyon, S. A., Physica 134B, 305 (1985).
49. Yang, C. H., and Lyon, S. A., Proc. 1986 Conf. Ultrafast Phenomena V, eds. Fleming, G.R. and Siegman, A.E. (Springer Verlag, 1986) p. 227.
50. Mott, N.F. and Davis, E.A., Electronic Processes in Non-crystalline Solids, 2nd ed., (Clarendon, Oxford, 1979) p. 266.
51. Auston, D. H., McAfee, S., Shank, C. V., Ippen, E. P., and Teschke, O., Solid State Electronics 21, 147 (1978);
Shank, C. V., Auston, D. H., Ippen, E. P., and Teschke, O., Solid State Commun. 26, 567 (1978).
52. Tang, C. L. and Erskine, D. J., Phys. Rev. Lett. 51, 840 (1983);
Erskine, D. J., Taylor, A. J., and Tang, C. L., Appl. Phys. Lett. 45, 54 (1984).

Hot Electron Relaxation in Quantum Wells

  • S. A. Lyon (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed