Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T09:50:29.691Z Has data issue: false hasContentIssue false

Host Guest Interactions in Ti-Implanted Silica, Borosilicate and Aluminosilicate Glasses

Published online by Cambridge University Press:  22 February 2011

D. O. Henderson
Affiliation:
Fisk University, Physics Department, Nashville, TN
S. H. Morgan
Affiliation:
Fisk University, Physics Department, Nashville, TN
R. Mu
Affiliation:
Fisk University, Physics Department, Nashville, TN
W. E. Collins
Affiliation:
Fisk University, Physics Department, Nashville, TN
R. H. Magruder
Affiliation:
Vanderbilt University, Materials Science Dept., Nashville, TN
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN.
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN.
Get access

Abstract

Titanium oxide glasses exhibit a significant nonlinear optical response which is attributed to the large polarizability of the Ti ion. Ion implantation is a unique method for incorporating polarizable ions in glass hosts and allows for tailoring the nonlinear optical properties of the material for potential device applications in all optical switching and planar waveguide technology. However, at the molecular level, the linear and nonlinear properties of ion implanted glasses are governed by interactions between the glass host and the implanted ion, radiation damage, and ion-glass chemistry. In order to probe the host-guest interactions, we have measured the infrared and optical spectra for Ti implanted in silica, borosilicate, and aluminosilicate glasses. The infrared and optical spectra indicate that the host-guest interactions and defect concentration differ significantly for the three glasses investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lines, M. E. J. Appl. Phys., 69, 6876 (1991).Google Scholar
2 Friberg, S. R. and Smith, P. W., IEEE J. Quantum Electronics, QE–23, 2089 (1987).Google Scholar
3 Glass, A. M., Science, 226, 657 (1984).Google Scholar
4 Vogel, E. M., Weber, M. J. and Krol, D. M., Phys. and Chem. Glasses, 32, 231 (1991).Google Scholar
5 Arnold, G. W., in The Physics of MOS Insulators, eds. Lucovsky, G., Pantelides, S. T., and Galeener, F. L., Pergammon, Oxford 1980, p112.Google Scholar
6 Windisch, C. F. Jr. and Risen, W. M. Jr., J. Noncryst. Solids, 48, 307 (1982).Google Scholar
7 Creighton, J. A. and Eadon, D. G., J. Chem. Soc. Faraday Trans., 87 3881 (1991).Google Scholar
8 Haglund, R. F., Magruder, R. H. III, Morgan, S. H., Henderson, D. O., Weller, R. A., Yang, L., and Zuhr, R. A., Nucl. Instr. Methods B65, 405 (1992).Google Scholar
9 Magruder, R. H. III, Henderson, D. O., Morgan, S. H., and Zuhr, R. A., J. Noncryst. Solids 152, 258 (1992).Google Scholar
10 Magruder, R. H. III, Henderson, D. O., Morgan, S. H., and Zuhr, R. A., Mat. Res. Soc. Proc, Vol. 235, 383 (1992).Google Scholar
11 Chmel, A., Eranosyan, G. M., and Kharshak, A. A., J. Noncryst. Solids, 146, 213 (1992).Google Scholar
12 Bertoncello, R., Glisenti, A., Granozzi, G., Battaglin, G., Caccavale, F., Cattaruzza, E., and Mazzoldi, P., J. Noncryst. Solids, 162, 205 (1993).Google Scholar