Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T15:56:02.162Z Has data issue: false hasContentIssue false

Hopping Transport and Voltage Induced Metal-Insulator Transition in Polythiophene Field Effect Transistors

Published online by Cambridge University Press:  01 February 2011

Anoop Singh Dhoot
Affiliation:
asd@physics.ucsb.edu, UCSB, Center for Polymers and Organic Solids, UCSB Polymers Center, University of California, Santa Barbara, California, 93106, United States, 805 893 3054
Guangming Wang
Affiliation:
gmwang@physics.ucsb.edu, University of California, Center for Polymers and Organic Solids, Santa Barbara, California, 93106, United States
Daniel Moses
Affiliation:
moses@physics.ucsb.edu, University of California, Center for Polymers and Organic Solids, Santa Barbara, California, 93106, United States
Alan J. Heeger
Affiliation:
ajhe@physics.ucsb.edu, University of California, Center for Polymers and Organic Solids, Santa Barbara, California, 93106, United States
Get access

Abstract

We have studied the carrier transport in regio-regular polythiophene field effect transistors (FETs) by four-probe measurements of the steady-state channel conductance from room temperature to 4.2 K. At high gate voltage (constant total carrier density, n = 5×1012 cm−2) and at low temperatures, we demonstrate that the gate voltage and source-drain voltage combine to induce the insulator-to-metal transition. In the insulating regime, the carrier transport is well described by phonon assisted hopping in a disordered Fermi Glass (with Coulomb interactions between the hopping charge carrier and the charge left behind). At the highest gate voltages and at sufficiently high source-drain voltages, the data imply a zero-temperature transition from disordered insulator to metal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chiang, C. K., Fincher, C. R., Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., Gau, S. C., and Macdiarmid, A. G., Phys. Rev. Lett. 39, 10981101 (1977).Google Scholar
2 Arkhipov, V. I., Heremans, P., Emelianova, E. V., and Bässler, H., Phys. Rev. B 71, 045214 (2005).Google Scholar
3 Bässler, H., Phys. Status Solidi B 175, 1556 (1993).Google Scholar
4 Tanase, C., Meijer, E. J., Blom, P. W. M., and Leeuw, D. M. de, Phys. Rev. Lett. 91, 216601 (2003).Google Scholar
5 Burroughes, J. H., Jones, C. A., and Friend, R. H., Nature 335, 137141 (1988).Google Scholar
6 Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., Spiering, A. J. H., Janssen, R. A. J., Meijer, E. W., Herwig, P., and Leeuw, D. M. de, Nature 401, 685688 (1999).Google Scholar
7 Wang, G. M., Swensen, J., Moses, D., and Heeger, A. J., J. Appl. Phys. 93, 61376141 (2003).Google Scholar
8 Ma, W. L., Yang, C. Y., Gong, X., Lee, K., and Heeger, A. J., Adv. Funct. Mater. 15, 16171622 (2005).Google Scholar
9 Bürgi, L., Richards, T. J., Friend, R. H., and Sirringhaus, H., J. Appl. Phys. 94, 61296137 (2003).Google Scholar
10 Menon, R., Yoon, C. O., Moses, D., and Heeger, A. J., “Handbook of Conducting Polymers,” Handbook of Conducting Polymers, ed. Skotheim, T.A., Elsenbaumer, R.L., and Reynolds, J.R. (Marcel Dekker, 1998) pp. 2784.Google Scholar
11 Shklovskii, B. I. and Efros, A. L., Electronic Properties of Doped Semiconductors, Vol. 45 (Springer-Verlag, 1984).Google Scholar
12 Yoon, C. O., Reghu, M., Moses, D., and Heeger, A. J., Phys. Rev. B 49, 1085110863 (1994).Google Scholar