Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-09T16:13:16.409Z Has data issue: false hasContentIssue false

Homoepitaxial Growth of GaN Using Seeded Supersonic Molecular Beams

Published online by Cambridge University Press:  10 February 2011

E. Chen
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695–7905
S. Zhang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7907
A. Michel
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695–7905
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7907
H. H. Lamb
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695–7905
Get access

Abstract

Homoepitaxial growth of GaN on MOCVD-grown GaN/AlN/6H-SiC substrates was investigated using NH3-seeded supersonic molecular beams and an effusive Ga source. Ga-limited growth is observed at 730 and 770°C for incident Ga fluxes ≤ 1.2×1015 cm−2 s−1 using a 0.25 eV NH3 beam. A Ga incorporation efficiency of 20–25% is observed under these conditions. Increasing NH3 kinetic energy in the 0.25 to 0.61 eV range results in a modest increase in the GaN growth rate which we ascribe to an enhancement in NH3 reactivity. A concomitant increase in surface roughness is observed with increasing GaN growth rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neumayer, D. A., and Ekerdt, J. G., Chem. Mater. 8, 9 (1996)10.1021/cm950108rGoogle Scholar
2. Mohammad, S. N. and Morkoc, H., Prog. Quant. Electr. 20, 361 (1996)10.1016/S0079-6727(96)00002-XGoogle Scholar
3. Nakamura, S., Japan. J. Appl. Phys. 30, L1705 (1991).10.1143/JJAP.30.L1705Google Scholar
4. Lorenz, M. R. and Binkowski, B. B., J. Electrochem Soc. 109, 24 (1962).10.1149/1.2425318Google Scholar
5. Lamb, H. H., Lai, K. K., Torres, V. and Davis, R. F., in “Film Synthesis and Growth Using Energetic Beams”, MRS Symp. Proc. 388, 265 (1995)Google Scholar
6. Sumakeris, J. J., Chilukuri, R. K., Davis, R. F. and Lamb, H. H., in “Gallium Nitride and Related Materials”, MRS Symp. Proc. 395, 331 (1996)10.1557/PROC-395-331Google Scholar
7. Sellidj, A., Ferguson, B. A., Mattord, T. J., Streetman, B. G. and Mullins, C. B., Appl. Phys. Lett. 68, 3314 (1996)10.1063/1.116042Google Scholar
8. Chilukuri, R. K., Zhang, S., Chen, E., Davis, R. F. and Lamb, H. H., in “III-V Nitride”, MRS Symp. Proc. 449, 355 (1997)10.1557/PROC-449-355Google Scholar
9. Miller, D. R. in Atomic and Molecular Beam Methods, Ch. 2, Ed. Scoles, G., Oxford University Press (1988)Google Scholar
10. Torres, V., Meloni, M. and Doak, R. B., J. Phys. Chem. To be published (1997)Google Scholar
11. Ploog, K.in Atomic and Molecular Beam Methods, Ch. 16, Ed. Scoles, G., Oxford University Press(1988)Google Scholar
12. Held, R., Crawford, D. E., Johnston, A. M., Dabiran, A. M. and Cohen, P. I., J. Electron. Mater. 26, 272 (1997)10.1007/s11664-997-0163-zGoogle Scholar