Skip to main content Accessibility help


  • Peter Pfeifer (a1), Jacob W. Burress (a2), Mikael B. Wood (a3), Cintia M. Lapilli (a4), Sarah A. Barker (a5), Jeffrey S. Pobst (a6), Raina J. Cepel (a7), Carlos Wexler (a8), Parag S. Shah (a9), Michael J. Gordon (a10), Galen J. Suppes (a11), S. Philip Buckley (a12), Darren J. Radke (a13), Jan Ilavsky (a14), Anne C. Dillon (a15), Philip A. Parilla (a16), Michael Benham (a17) and Michael W. Roth (a18)...


An overview is given of the development of advanced nanoporous carbons as storage ma-terials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles. The carbons are produced in a multi-step process from corncob, have surface areas of up to 3500 m2/g, porosities of up to 0.8, and reversibly store, by physisorp-tion, record amounts of methane and hydrogen. Current best gravimetric and volumetric storage capacities are: 250 g CH4/kg carbon and 130 g CH4/liter carbon (199 V/V) at 35 bar and 293 K; and 80 g H2/kg carbon and 47 g H2/liter carbon at 47 bar and 77 K. This is the first time the DOE methane storage target of 180 V/V at 35 bar and ambient temperature has been reached and exceeded. The hydrogen values compare favorably with the 2010 DOE gravimetric and volu-metric targets for hydrogen. A prototype adsorbed natural gas (ANG) tank, loaded with carbon monoliths produced accordingly and currently undergoing a road test in Kansas City, is de-scribed. A preliminary analysis of the surface and pore structure is given that may shed light on the mechanisms leading to the extraordinary storage capacities of these materials. The analysis includes pore-size distributions from nitrogen adsorption isotherms; spatial organization of pores across the entire solid from small-angle x-ray scattering (SAXS); pore entrances from scanning electron microscopy (SEM) and transmission electron microscopy (TEM); H2 binding energies from temperature-programmed desorption (TPD); and analysis of surface defects from Raman spectra. For future materials, expected to have higher H2 binding energies via appropriate sur-face functionalization, preliminary projections of H2 storage capacities based on molecular dy-namics simulations of adsorption of H2 on graphite, are reported.



Hide All
1.(a) Addy, M., Olson, T., and Schwyzer, D., “State Alternative Fuels Plan,” California Air Resources Board and California Energy Commission, Publication No. CEC-600-2007-011-CTF, October 2007 (Sacramento, CA). (b) M. Addy, P. Ward, and J. Wiens, “AB 1007 State Alternative Fuels Plan: Natural Gas Scenario,” California Energy Commission and California Air Resources Board, May 31, 2007 (Sacramento, CA). (c) M. Addy, “Prospects, Challenges and Solutions for NGV's in a Low Carbon World,” NGVAmerica Conference, October 16, 2007 (Reno, NV).
2.U.S. Department of Energy and U.S. Department of Transportation, “Hydrogen Posture Plan–An Integrated Research, Development and Demonstration Plan,” December 2006 (Washington, DC).
3.TIAX LLC, “Full Fuel Cycle Assessment: Well-to-Wheels Energy Inputs, Emissions, and Water Impacts–State Plan to Increase the Use of Non-Petroleum Transportation Fuels,” Report to the California Energy Commission, Publication No. CEC-600-2007-004-REV, August 1, 2007 (Sacramento, CA).
4.(a) Bhatia, S.K. and Myers, A.L., Langmuir 22, 1688 (2006). (b) A. Gigras, S.K. Bhatia, A.V.A. Kumar, and A.L. Myers, Carbon 45, 1043 (2007).
6. Pfeifer, P., Ehrburger-Dolle, F., Rieker, T.P., González, M.T., Hoffman, W.P., MolinaSabio, M., Rodríguez-Reinoso, F., Schmidt, P.W., and Voss, D.J., Phys. Rev. Lett. 88, 115502 (2002).
7. Burchell, T. and Rogers, M., SAE Tech. Pap. Ser., 2000-01-2205 (2000).
8. Pfeifer, P., Suppes, G.J., Shah, P.S., and Burress, J.W., U.S. Patent Application No. 11/937,150 (November 8, 2007).
9. Ginzburg, Y., “ANG Storage as a Technological Solution for the ‘Chicken-and-Egg’ Problem of NGV Refueling Infrastructure Development.” Proceedings of the 23rd World Gas Conference (International Gas Union, Amsterdam, 2006).
10.(a) Eddaoudi, M., Kim, J.., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M., and Yaghi, O., Science 295, 469 (2002). (b) T. Düren, L. Sarkisov, O.M. Yaghi, and R.Q. Snurr, Langmuir 20, 2683 (2004).
11. Chamot, J.A., National Science Foundation, Press Release, February 16, 2007, http: //
12.(a) Liu, Y., Kabbour, H., and Brown, C.M., Abstract R2.3, 2007 MRS Fall Meeting, Boston. (b) Y. Liu, H. Kabbour, C.M. Brown, D.A. Neumann, and C.C. Ahn, Langmuir, in press (2008).
13. Poirier, E., Chahine, R., Bénard, P., Cossement, D., Lafi, L., Mélançon, E., Bose, T.K., and Désilets, S., Appl. Phys. A 78, 961 (2004).10.1007/s00339-003-2415-y
14. Furukawa, H., Miller, M.A., and Yaghi, O.M., J. Mater. Chem. 17, 3197 (2007).
15.(a) Pfeifer, P. and Liu, K.-Y., Stud. Surf. Sci. Catal. 104, 625 (1997). (b) K.A. Sosin and D.F. Quinn, J. Porous Mater. 1, 111 (1995).10.1016/S0167-2991(97)80075-4
16. Wood, M.B., Burress, J.B., Ilavsky, J., Lapilli, C.M., Wexler, C., and Pfeifer, P., to be published.
17.(a) Bale, H.D. and Schmidt, P.W., Phys. Rev. Lett. 53, 596 (1984). (b) P. Pfeifer and P.W. Schmidt, Phys. Rev. Lett. 60, 1345 (1988).
18. Dillon, A.C., Mahan, A.H., Parilla, P.A., Alleman, J.L., Heben, M.J., Jones, K.M., and Gilbert, K.E.H., NanoLetters 3, 1425 (2003).
19. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K., J. Comp. Chem. 26, 1781 (2005). See also
20. Mattera, L., Rosatelli, F., Salvo, C., Tommasini, F., Valbusa, U., and Vidali, G., Surf. Sci. 93, 515 (1980).10.1016/0039-6028(80)90279-4



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed