Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-07T05:27:32.164Z Has data issue: false hasContentIssue false

High-Speed Photoconductive Detectors Fabricated in Heteroepitaxial GaAs Layers

Published online by Cambridge University Press:  25 February 2011

G. W. Turner
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
V. Diadiuk
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
H. Q. Le
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
H. K. Choi
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
G. M. Metze
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
B-Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
Get access

Abstract

Response times of ∼60 and 25 ps (FWHM), respectively, have been measured for photoconductive detectors fabricated in GaAs layers grown by molecular beam epitaxy on silicon substrates and silicon-on-sapphire substrates. Photoconductive detectors, which can be readily combined with GaAs logic devices such as MESFETs to provide high-speed optical to electrical conversion, could be used in optical interconnects that are integrated with Si circuits on monolithic GaAs/Si wafers. Transconductance values of 120 mS/mm have been obtained for MESFET's fabricated in GaAs layers grown on silicon-on-sapphire substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Choi, H. K., Tsaur, B-Y., Metze, G. M., Turner, G. W., and Fan, J. C. C., IEEE Electron Device Lett. EDL-5, 207 (1984).Google Scholar
[2] Windhorn, T. H. and Metze, G. M., Appl. Phys. Lett. 47, 1036 (1985).Google Scholar
[3] Nonaka, T., Akiyama, M., Kawarda, Y., and Kaminishi, K., Jpn. J. Appl. Phys. Lett. 23, L919 (1984).Google Scholar
[4] Fischer, R., Chan, N., Kopp, W., Morkoý, M., Erickson, L. P., and Youngman, R., Appl. Phys. Lett. 47, 397 (1985).Google Scholar
[5] Soga, T., Hatturi, S., Sakai, S., Takeyasu, M., and Umeno, M., J. Appl. Phys. 57, 4578 (1985).Google Scholar
[6] Choi, H. K., Turner, G. W., and Tsaur, B-Y., Conference Record 1985 IEEE International Electron Devices Meeting, (IEEE, New York, 1985), p. 76.Google Scholar
[7] Turner, G. W., Metze, G. M., Diadiuk, V., Tsaur, B-Y., and Le, H. Q., Conference Record 1985 IEEE International Electron Devices Meeting, (IEEE, New York, 1985), p. 418.Google Scholar
[8] Manasevit, H. M. and Thorsen, A. C., J. Electrochem. Soc. 119, 99 (1972).Google Scholar
[9] Tsaur, B-Y. and Metze, G. M., Appl. Phys. Lett. 45, 535 (1984).Google Scholar
[10] Auston, D. H., in Picosecond Optoelectronic Devices, Ed. Lee, C. H. (Academic Press, New York, 1984).Google Scholar
[11] Carruther, T. F. and Weller, J. F., Conference Record 1985 IEEE International Electron Devices Meeting, (IEEE, New York, 1985), p. 483.Google Scholar
[12] Abrahams, M. S. and Buiocchi, C. J., Appl. Phys. Lett. 27, 325 (1975).Google Scholar
[13] Ito, M., Wada, G., Nakai, K., and Sakurai, T., IEEE Electron Device Lett. EDL-5, 531 (1984).Google Scholar