Skip to main content Accessibility help
×
Home

High-Resolution X-Ray Photoemission Electron Microscopy at the Advanced Light Source

  • Thomas Stammler (a1), Simone Anders (a1), Howard A. Padmore (a1), Joachim Stöhr (a2), Michael Scheinfein (a3) and Harald Ade (a4)...

Abstract

X-ray Photoemission Electron Microscopy (X-PEEM) is a full-field imaging technique where the sample is illuminated by an x-ray beam and the photoemitted electrons are imaged on a screen by means of an electron optics. It therefore combines two well-established materials analysis techniques - photoemission electron microscopy (PEEM) and x-ray spectroscopy such as near edge x-ray absorption fine structure (NEXAFS) spectroscopy. This combination opens a wide field of new applications in materials research and has proven to be a powerful tool to investigate simultaneously topological, elemental, chemical state, and magnetic properties of surfaces, thin films, and multilayers at high spatial resolution. A new X-PEEM installed at the bend magnet beamline 7.3.1.1 at the Advanced Light Source (ALS) is designed for a spatial resolution of 20 nm and is currently under commissioning. An overview of the ongoing experimental program using X-PEEM in the field of materials research at the ALS is given by elemental and chemical bonding contrast imaging of hard disk coatings and sliders, field emission studies on diamond films as possible candidates for field-emission flat-panel displays, and the study of dewetting and decomposition phenomena of thin polymer blends and bilayers.

Copyright

References

Hide All
[1] Stöhr, J., NEXAFS Spectroscopy, New York: Springer, 1992.
[2] Schütz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeller, R., Frahm, R., and Materlik, G., Phys. Rev. Lett. 58, 737 (1987)
[3] Bauer, E., Franz, T., Koziol, C., Lilienkamp, G., Schmidt, T., in: Chemical, Structural and Electronic Analysis of Heterogeneous Surfaces on the Nanometer Scale, edited by Rosei, R., Kluwer Academic, Dordrecht, in press.
[4] Fink, R., Weiss, M.R., Umbach, E., Preikszas, D., Rose, H., Spehr, R., Hartel, P., Engel, W., Degenhardt, R., Wichendahl, R., Kuhlenbeck, H., Erlebach, W., Ihmann, K., Schlögl, R., Freund, H.-J., Bradshaw, A.M., Lilienkamp, G., Schmidt, Th., Bauer, E., Benner, G., Journal of Electron Spectroscopy and Related Phenomena 84 (1997) 231250.
[5] Watts, R.N., Liang, S., Levine, Z.H., Lucatorto, T.B., Polack, F., and Scheinfein, M.R., Rev. Sci. Instrum. 68 (1997) 34643476.
[6] Tonner, B.P., Dunham, D., Droubay, T., and Pauli, M., Journal of Electron Spectroscopy and Related Phenomena 84 (1997) 211.
[7] Anders, S., Stammler, Th., Bhatia, C.Singh, Stöhr, J., Fong, W., and Bogy, D. B., Spring Meeting of the Material Research Society, San Francisco, 1998, to be published.
[8] Winesett, D. A., Ade, H., Smith, A. P., Rafailovich, M., Sokolov, S., and Slep, D., Microscopy and Microanalysis, to be published (1998).
[9] Anders, S., Stammler, Th., Ade, H., Rafailovich, M., Sokolov, J., Slep, D., Heske, C., and Stöhr, J, to be published.

Related content

Powered by UNSILO

High-Resolution X-Ray Photoemission Electron Microscopy at the Advanced Light Source

  • Thomas Stammler (a1), Simone Anders (a1), Howard A. Padmore (a1), Joachim Stöhr (a2), Michael Scheinfein (a3) and Harald Ade (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.