Skip to main content Accessibility help
×
Home

High-pressure Metal Hydride Tank for Fuel Cell Vehicles

  • Daigoro Mori (a1), Norihiko Haraikawa (a1), Nobuo Kobayashi (a1), Hidehito Kubo (a2), Keiji Toh (a2), Makoto Tsuzuki (a2), Tamio Shinozawa (a3) and Tomoya Matsunaga (a3)...

Abstract

A new type of hydrogen-absorbing alloy tank has been developed. The high-pressure metal hydride (MH) tank has been designed based on a 35 MPa cylinder vessel. The heat exchanger module is integrated into the tank. Its advantage over high-pressure cylinder vessels is its large hydrogen storage capacity, for example 7.3 kg with a tank volume of 180 L. Cruising range is about 2.5 times longer than that of a 35 MPa cylinder vessel system with the same volume.

The hydrogen-charging rate of this system is equal to the 35 MPa cylinders without any external cooling facility. Furthermore, release of hydrogen at 243 K is enabled due to the use of a hydrogen-absorbing alloy with a high disassociation pressure, Ti-Cr-Mn alloy with AB2 laves phase. It is thought that the high-pressure MH system is one realistic option for fuel cell vehicles to achieve a cruising range of over 700 km.

Copyright

References

Hide All
1 Schlapbach, L. and Editor, Guest, MRS Bulletin, 675, 675 (2002).
2 Schlapbach, L. and Züttel, A., Nature, 353, 353 (2001).
3 Akiba, E. and Iba, H., Intermetallics, 461, 461 (1998).
4 Akiba, E. and Okada, M., MRS Bulletin, 699, 699 (2002).
5 Okada, M., Kuriiwa, T., Tamura, T., Takamura, H. and Kamegawa, A., Met. Mater. Int., 67, 67 (2001).
6 Esaki, K., in 17th University Science symposium “21 Seiki Wo Hiraku Suiso No Sekai”, edited by Okada, M. (2003) pp158168.
7 Takeichi, N., Senoh, H., Yokota, T., Tsuruta, H., Hamada, K., Takeshita, H. T., Tanaka, H., Kiyobayashi, T., Takano, T. and Kuriyama, N., Int. J. Hydrogen Energ., 1121, 1121 (2003).
8 Reilly, J. J., in Anderson, A. F. and Mealand, M. J. (eds.), Hydrides for Energy Storage, Pergamon, Oxford, 1978, pp. 301322.
9 Mori, D., Kobayashi, N., Shinozawa, T., Matsunaga, T., Kubo, H., Toh, K. and Tsuzuki, M., Collected Abstracts of the 2004 Autumn Meeting of the Japan Inst. Metals, p. 157
10 Mori, D., Kobayashi, N., Shinozawa, T., Matsunaga, T., Kubo, H., Toh, K. and Tsuzuki, M., J. Japan Inst. Metals, 308, 308 (2005).
11 Mori, D., Kobayashi, N., Matsunaga, T., Toh, K. and Kojima, Y., Materia Japan, 257, 257 (2005).
12 Kojima, Y., Kawai, Y., Towata, S., Matsunaga, T., Shinozawa, T. and Kimbara, M., Collected Abstracts of the 2004 Autumn Meeting of the Japan Inst. Metals, p. 157
13 Oyakawa, K., Uchida, H. and Watanabe, S., Proc. of Thermal Engineering Conference, 47, (JSME, 2002).
14 Monde, M., Mitsutake, Y. and Arima, H., Proc. of Thermal Engineering Conference, 217 (JSME, 2001).
15 Mitsutake, Y., Monde, M., Uchida, H., Oyakawa, K., Tsunokake, S. and Fuura, T., Proc. of Thermal Engineering Conference, 53 (JSME, 2002).
16 Kuriyama, N., The 43rd Seminar on Electrochemistry, 25 (The Electrochemical Society of Japan, 2003).

High-pressure Metal Hydride Tank for Fuel Cell Vehicles

  • Daigoro Mori (a1), Norihiko Haraikawa (a1), Nobuo Kobayashi (a1), Hidehito Kubo (a2), Keiji Toh (a2), Makoto Tsuzuki (a2), Tamio Shinozawa (a3) and Tomoya Matsunaga (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed