Skip to main content Accessibility help

Highly-Tunable Polymer/CNTs Nanostructures: A Rapid and Facile Approach for Controlled Architecture and Composition

  • Guy Mechrez (a1), Ran Y. Suckeveriene (a1), Moshe Narkis (a1) and Ester Segal (a2) (a3)


This research presents a new fabrication method for tailoring polymer/carbon nanotubes (CNTs) nanostructures with controlled architecture and composition. The CNTs are finely dispersed in a polymeric latex i.e. polyacrylate, via ultrasonication, followed by a microfiltration process. The later step allows preserving the homogeneous dispersion structure in the resulting solid nanocomposite. The combination of microfiltration and proper choice of the polymer latex allows for the design of complex nanostructures with tunable properties e.g., porosity, mechanical properties. An important attribute of this methodology is the ability to tailor any desired composition of polymer-CNTs systems, i.e., nanotubes content can practically vary anywhere between 0 to 100 wt%. Thus, for the first time a given polymer/CNTs system is studied over the entire CNTs composition, resembling immiscible binary polymer blends. The polymer in these systems exhibits a structural transition from a continuous matrix (nanocomposite) to segregated domains dispersed within a porous CNTs network. An analogy of this structural transition to phase inversion phenomena in immiscible polymer blends is suggested.



Hide All
1. Grossiord, N., Loos, J., Regev, O. and Koning, C.E., Chemistry of Materials 18, 1089 (2006).
2. Grossiord, N., Loos, J., van Laake, L., Maugey, M., Zakri, C., Koning, C.E. and Hart, A.J., Advanced Functional Materials 18, 3226 (2008).
3. Breuer, O. and Sundararaj, U., Polymer Composites 25, 630 (2004).
4. Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M.E. and Zhou, C., Nano Letters 6, 1880 (2006).
5. Choi, W., Ohtani, S., Oyaizu, K., Nishide, H. and Geckeler, K.E., Advanced Materials 23, 4440 (2011).
6. Goldman, D. and Lellouche, J.-P., Carbon 48, 4170 (2010).
7. Antonietti, M., Shen, Y., Nakanishi, T., Manuelian, M., Campbell, R., Gwee, L., Elabd, Y.A., Tambe, N., Crombez, R. and Texter, J., ACS Appl. Mater. Interfaces 2, 649 (2010).
8. Kara, S., Arda, E., Dolastir, F. and Pekcan, O., J. Colloid Interface Sci. 344, 395 (2010).
9. Kim, D.-Y., Kim, Y.-S., Choi, K.-W., Grunlan, J.C. and Yu, C.-H., ACS Nano 4, 513 (2010).
10. Mu, M., Walker, A.M., Torkelson, J.M. and Winey, K.I., Polymer 49, 1332 (2008).
11. Park, E.J., Hong, S., Park, D.W. and Shim, S.E., Colloid Polym. Sci. 288, 47 (2010).
12. Yu, C., Kim, Y.S., Kim, D. and Grunlan, J.C., Nano Lett. 8, 4428 (2008).
13. Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C.E. and Loos, J., Carbon 45, 2897 (2007).
14. Das, R.K., Liu, B., Reynolds, J.R. and Rinzler, A.G., Nano Letters 9, 677 (2009).
15. Dionigi, C., Stoliar, P., Ruani, G., Quiroga, S.D., Facchini, M. and Biscarini, F., Journal of Materials Chemistry 17, 3681 (2007).
16. Hermant, M.C., Verhulst, M., Kyrylyuk, A.V., Klumperman, B. and Koning, C.E., Compos. Sci. Technol. 69, 656 (2009).
17. Mechrez, G., Suckeveriene, R.Y., Zelikman, E., Rosen, J., Ariel-Sternberg, N., Cohen, R., Narkis, M. and Segal, E., ACS Macro Letters 1, 848 (2012).
18. Green, M.J., Behabtu, N., Pasquali, M. and Adams, W.W., Polymer 50, 4979 (2009).
19. Fakhri, N., MacKintosh Frederick, C., Lounis, B., Cognet, L. and Pasquali, M., Science 330, 1804 (2010).
20. Duggal, R. and Pasquali, M., Phys Rev Lett 96, 246104 (2006).
21. Talmon, Y., Surfactant Sci. Ser. 83, 147 (1999).
22. Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M. and Yumura, M., Adv. Mater. (Weinheim, Ger.) 14, 1380 (2002).
23. Park, S.H. and Bandaru, P.R., Polymer 51, 5071 (2010).
24. Zeng, Y., Liu, P., Du, J., Zhao, L., Ajayan, P.M. and Cheng, H.-M., Carbon 48, 3551 (2010).
25. Cao, Q., Song, Y., Tan, Y. and Zheng, Q., Polymer 50, 6350 (2009).
26. Shamir, D., Siegmann, A. and Narkis, M., J. Appl. Polym. Sci. 115, 1922 (2010).
27. Shemesh, R., Siegmann, A., Tchoudakov, R. and Narkis, M., J. Appl. Polym. Sci. 102, 1688 (2006).
28. Zhao, Z., Zheng, W., Yu, W. and Long, B., Carbon 47, 2118 (2009).
29. Wang, T., Lei, C.-H., Dalton, A.B., Creton, C., Lin, Y., Fernando, K.A.S., Sun, Y.-P., Manea, M., Asua, J.M. and Keddie, J.L., Adv. Mater. (Weinheim, Ger.) 18, 2730 (2006).
30. Park, J.G., Yun, N.G., Park, Y.B., Liang, R., Lumata, L., Brooks, J.S., Zhang, C. and Wang, B., Carbon 48, 4276 (2010).
31. Izadi-Najafabadi, A., Yamada, T., Futaba, D.N., Yudasaka, M., Takagi, H., Hatori, H., Iijima, S. and Hata, K., ACS Nano 5, 811 (2011).
32. Cha, S.I., Kim, K.T., Lee, K.H., Mo, C.B., Jeong, Y.J. and Hong, S.H., Carbon 46, 482 (2008).
33. Mechrez, G., Suckeveriene, R.Y., Tchoudakov, R., Kigly, A., Segal, E. and Narkis, M., J. Mater. Sci. 47, 6131 (2012).


Highly-Tunable Polymer/CNTs Nanostructures: A Rapid and Facile Approach for Controlled Architecture and Composition

  • Guy Mechrez (a1), Ran Y. Suckeveriene (a1), Moshe Narkis (a1) and Ester Segal (a2) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed