Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T12:35:11.243Z Has data issue: false hasContentIssue false

A Highly Sensitive and Selective Surface-Enhanced Nanobiosensor

Published online by Cambridge University Press:  01 February 2011

Amanda J. Haes
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
Richard P. Van Duyne
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
Get access

Abstract

Nanosphere lithography (NSL) derived triangular Ag nanoparticles were used to create an extremely sensitive and specific optical biological and chemical nanosensor. Using simple UV-vis spectroscopy, biotinylated surface-confined Ag nanoparticles were used to detect streptavidin down to one picomolar concentrations. The system was tested for nonspecific binding interactions with bovine serum albumin and was found to display virtually no adverse results. The extremely sensitive and selective response of the Ag nanoparticle sensor indicates an exciting use for biological and chemical sensing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jensen, T. R. Malinsky, M. D. Haynes, C. L. Duyne, R. P. Van, J. Phys. Chem. B 104, 1054910556 (2000).Google Scholar
2. Kreibig, U. Vollmer, M. Optical Properties of Metal Clusters (Springer-Verlag, Heidelberg, Germany, 1995), Vol. 25.Google Scholar
3. Schuck, P. Annu. Rev. Biophys. Biomol. Struct. 26, 541566 (1997).Google Scholar
4. Sackmann, E. Science 271, 4348 (1996).Google Scholar
5. Knoll, W. Liley, M. Piscevic, D. Spinke, J. Tarlov, M. J. J. Adv. In Biophys. 34, 231251 (1997).Google Scholar
6. Bright, R. M. Musick, M. D. Natan, M. J. Langmuir 14, 56965701 (1998).Google Scholar
7. Mirkin, C. A. Letsinger, R. L. Storhoff, J. J. Mucic, R. C. Nature 382, 607609 (1996).Google Scholar
8. Malinsky, M. D. Kelly, K. L. Schatz, G. C. Duyne, R. P. Van, J. Am. Chem. Soc. 123, 14711482 (2001).Google Scholar
9. Green, N. M. Adv. In Protein Chem. 29, 85133 (1975).Google Scholar
10. Wilchek, M. B. Edward, A. in Avidin-biotin immoblization systems Cass, T. L. Frances, S. Ed. (Oxford University Press, Oxford, UK, 1998) pp. 1534.Google Scholar
11. Brockman, J. M. Nelson, B. P. Corn, R. M. Ann. Rev. of Phys. Chem. 51, 4163 (2000).Google Scholar
12. Frey, B. L. Corn, R. M. Anal. Chem. 68, 31873193 (1996).Google Scholar
13. Jung, L. S. Nelson, K. E. Stayton, P. S. Campbell, C. T. Langmuir 16, 94219432 (2000).Google Scholar
14. Jensen, T. R. Schatz, G. C. Duyne, R. P. Van, J. Phys. Chem. B 103, 23942401 (1999).Google Scholar
15. Hulteen, J. C. et al., J. Phys. Chem. B 103, 38543863 (1999).Google Scholar
16. Haynes, C. L. Duyne, R. P. Van, J. Phys. Chem. B 105, 55995611 (2001).Google Scholar
17. Bain, C. D. Whitesides, G. M. J. Am. Chem. Soc. 110, 65606561 (2001).Google Scholar
18. Haes, A. J. Duyne, R. P. Van, manuscript in preparation.Google Scholar