Skip to main content Accessibility help

A Highly Reliable Al Line with Controlled Texture and Grain Boundaries

  • M. Hasunuma (a1), H. Toyoda (a1), T. Kawanoue (a1), S. Ito (a1), H. Kaneko (a1) and M. Miyauchi (a1)...


In order to clarify the relationship between Al line reliability and film microstructure, especially grain boundary structure and crystal texture, we have tested three kinds of highly textured Al lines, namely, single-crystal Al line, quasi-single-crystal Al line and hypertextured Al line, and two kinds of conventional Al lines deposited on TiN/Ti and on SiO2. Consequently, the empirical relation between the electromigration (EM) lifetime of Al line † and the (111) full width at half maximum (FWHM) value ω is described by † ω-2 [1]. This improvement of Al line reliability results from as following reasons; firstly, homogeneous microstructure and high activation energy of 1.28eV for the single-crystal Al line (ω=0.18°); secondly, sub-grain boundaries which consisted of dislocation arrays found in the quasi-single-crystal Al line (ω=0.26°) has turned out to be no more effective mass transport paths because dislocation lines are perpendicular to the direction of electron wind. Although there exist plural grain boundary diffusion paths in the newly developed hypertextured Al line (ω=0.5°) formed by using an amorphous Ta-Al underlayer {1], the vacancy flux along the line has been suppressed to the same order of magnitude of single crystal line. It has been clarified that the decrease of FWHM value has promoted the formation of sub-grain boundaries and low-angle boundaries with detailed orientation analysis of individual grains in the hypertextured film. The longer EM lifetime for the hypertextured Al line is considered to be due to the small grain boundary diffusivities for these stable grain boundaries, and this diffusivity reduction resulted in the suppression of void/hillock pair in the Al lines. These results have confirmed that controlling texture and/or grain boundary itself is a promising approach to develop reliable Al lines which withstand higher current densities required in future ULSIs.



Hide All
1 Toyoda, H., Kawanoue, T., Hasunuma, M., Kaneko, H. and Miyauchi, M., Proc.32nd Ann. Int'l.Reliab.Phys.Symp IEEE, 178(1985)
2 Towner, J.M., Darks, A.G. and Tien, T., Proc.24th Ann. Int'l. Reliab.Phys.Symp., IEEE, 7(1986)
3 Hosoda, T., Yagi, H. and Tstuchikawa, T., Proc.27th Ann. Int'l. Reliab.Phys.Symp., IEEE, 202(1989)
4 Onuki, J., Koibuchi, Y., Fukada, S., Suwa, M., Misawa, Y. and Itagaki, T., IEDM Tech. Dig., JEEE, 454(1988)
5 Ogawa, S. and Nishimura, H., IEDM Tech.Dig.,IEEE, 277(1991)
6 Lin, T., Ahn, K.Y., Harper, J.M.E. and Chaloux, P.N., IEEE VMIC Conf., 76(1988)
7 Hinode, K. and Honma, Y., Proc.28th Ann. Int'l. Reliab.Phys.Symp., IEEE, 25(1990)
8 Ho, P.S., Howard, J.K. and White, J.F., J.Appl.Phys., 49 , 4083 (1978)
9 Kawanoue, T., Kaneko, H., Hasunuma, M. and Miyauchi, M., J.Appl.Phys., 7 4 (7), 4423(1993)
10 Vaidya, S. and Shinha, A.K., Thin Solid Films, 75, 253 (1981)
11 Knorr, D.B. and Lu, T.M., Appl.Phys.Lett., 54, 2210(1989)
12 Lytle, S.A. and Oates, A.S., J.Appl.Phys., 71 (1), 174(1992)
13 Marieb, T.N., Abratowski, E., Bravman, J.C., Madden, M. and Flinn, P., AIP Conf. Proc. No.305 (edited by P.S.Ho, , C.Y.Li, and P.Totta, ), 1(1994)
14 Yue, J.T., Funsten, W.P. and Taylar, R.V., Proc.23th Ann. Int’l. Reliab.Phys.Symp., IEEE, 1 (1985)
15 , Tanikawa, Okabayashi, H., Mori, H. and Fujita, H., Proc.28th Ann. Int'l. Reliab. Phys. Symp., IEEE, 209(1990)
16 Kaneko, H., Hasunuma, M., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S. and Miyauchi, M., Proc .28th Ann.Int’l. Reliab.Phys.Symp., IEEE, 194(1985)
17 Hasunuma, M., Kaneko, H., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S. and Miyauchi, M., IEDM Tech.Dig.,IEEE, 677(1989)
18 Hinode, K., Owada, N., Nishida, T. and Mukai, K., J. Vac.Sci.Technol., B5, 518(1987)
19 Gangulee, A. and d'Heurle, F.M., Thin Solid Films,16, 227(1973)
20 Kobayashi, T., Sekiguchi, A., Akiyama, N., Hosokawa, N. and Asamaki, T., J.Vac.Sci.Technol., A 10, 525(1992)
21 Yamada, I., Inokawa, H. and Takagi, T., J.Appl.Phys., 56, 2746 (1984)
22 d'Heurle, F., Berenbaum, L. and Rosenberg, R., Tran. of AIME, 242, 502 (1968)
23 Kaneko, H., Kawanoue, T., Hasunuma, M. and Miyauchi, M., AIP Conf. Proc. No.305 (edited by P.S.Ho, , C.Y.Li, and P.Totta, ),179 (1994)
24 Messer, R., Dais, S. and Wolf, D., Proc. 18th Ampere Congress (Nottingham, England),1974
25 Balluffi, R.W., Met. Trans., 13B,527(1982)
26 Wolf, D., J.Mater.Res., 5,1708(1990)

A Highly Reliable Al Line with Controlled Texture and Grain Boundaries

  • M. Hasunuma (a1), H. Toyoda (a1), T. Kawanoue (a1), S. Ito (a1), H. Kaneko (a1) and M. Miyauchi (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed