Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T11:44:08.760Z Has data issue: false hasContentIssue false

Highly Doped P-Type, N-Type CdS Thin Films and Diodes

Published online by Cambridge University Press:  15 February 2011

Wen P. Shen
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Amherst, NY 14260
Hoi S. Kwok
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Amherst, NY 14260 Department of Electrical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
Get access

Abstract

CdS thin films with doping concentration as high as 1017 cm-3 for p-type or 1021 cm-3 for n-type were achieved by pulsed excimer laser deposition without any post-annealing process. These films were grown on InP or GaAs substrates with good crystalline quality. By using this technique, CdS thin film p-n junctions were produced successfully.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Daneu, V., DeGloria, D. P., Sanchez, A., Tong, F., and Osgood, R. M. Jr., Appl. Phys. Lett. 49, 546 (1986).CrossRefGoogle Scholar
2. Britt, J. and Ferekides, C., Appl. Phys. Lett. 62, 2851 (1993).CrossRefGoogle Scholar
3. Dagenais, M. and Sharfin, W. F., Appl. Phys. Lett. 46, 230 (1985).CrossRefGoogle Scholar
4. LAks, D. B., Van de Walle, C. G., Neumark, G. F., and Pantelides, S. T., Appl. Phys. Lett. 63, 1375 (1993).CrossRefGoogle Scholar
5. Haase, M. A., Qiu, J., DePuydt, J. M., and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).CrossRefGoogle Scholar
6. lida, S., Yatabe, T., and Kinto, H., Jpn. J. Appl. Phys., 28, L535 (1989).Google Scholar
7. Sebastian, P.J., Appl. Phys. Lett., 62, 2956 (1993).CrossRefGoogle Scholar
8. Kashiwaba, Y., Kanno, I., and Ikeda, T., Jpn. J. Appl. Phys., 31, 1170 (1992).CrossRefGoogle Scholar
9. Kwok, H.S., Zheng, J. P., Witanachchi, S., Mattocks, P., Shi, L., Ying, Q. Y., Wang, X. W., and Shaw, D. T., Appl. Phys. Lett., 52, 1095 (1988).CrossRefGoogle Scholar
10. Kwok, H. S., Zheng, J. P., Witanachchi, S., Shi, L., and Shaw, D. T., Appl. Phys. Lett., 52, 1815 (1988).CrossRefGoogle Scholar
11. Cheung, J. T. and Madden, J., J. Vac. Sci. Technol. B5, 705 (1987).CrossRefGoogle Scholar
12. Dubowski, J. J., Williams, D. F., Sewell, P. B., and Norman, P., Appl. Phys. Lett., 46, 1081 (1985).CrossRefGoogle Scholar
13. Cheung, J. T., Appl. Phys. Lett., 51, 1940 (1987).CrossRefGoogle Scholar
14. Woods, J. and Champion, J. A., J. Electron. & Control 3, 243 (1960).Google Scholar
15. Coronado, C. A., Ho, E., Kolodziejski, L. A., and Huber, C. A., Appl. Phys. Lett., 61, 534 (1992).CrossRefGoogle Scholar
16. Sze, S. M., Physics of Semiconductor Devices, 2nd edition, John Willy & Sons, Inc. (1981).Google Scholar