Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-23T23:15:40.566Z Has data issue: false hasContentIssue false

High-Growth Rate a-Si:H Deposited by Hot-Wire CVD

Published online by Cambridge University Press:  16 February 2011

P. Brogueira
Affiliation:
Instituto Superior Técnico, Department of Physics, 1096 Lisboa Codex, Portugal
V. Chu
Affiliation:
INESC, Rua Alves Redol 9, 1000 Lisboa, Portugal
J.P. Conde
Affiliation:
Instituto Superior Técnico, Department of Physics, 1096 Lisboa Codex, Portugal
Get access

Abstract

We present a study of the optoelectronic and structural properties of a-Si:H deposited by Hot-Wire chemical vapor deposition (HW-CVD) from SiH4 and H2 at “Medium” (Tfil ≃ 1500°C) and “high” (Tfil ≃ 1900 °C) filament temperatures. For each tungsten filament temperature regime, the following deposition parameters are varied: (i) pressure (p ∼ 10−2 — 0.5 Torr); (ii) substrate temperature (Tsub ∼ 180 — 270 °C); (iii) silane flow rate (FsiH4 ∼ 1 — 10 ccm) and (iv) hydrogen flow rate (FH2 ∼ 0 — 10 seem). Films deposited at Tfil ∼ 1900 °C in a low pressure regime (p ∼ 2.7 × 10−2Torr) using flows of 5 sccm for both H2 and SiH4 had high deposition rates (rd ∼ 8 Ås−1). These films showed an optical bandgap, E9Tauc ≃ 1.7 eV, a dark conductivity σd ∼ 10−8Scm−1 with an activation energy Eα,σd ≃ 0.8 eV, and photoconductivity σph ≥ 10−5Scm−1ph ∼ 10−5). Films deposited at Tju = 1500 °C and p ≃ 0.3 Torr, showed 1.7 < E9Tauc < 2 eV, 10−5 < σd < 10−3Scm−1, 0.2 < Eα,σ d < 0.5 eV and σphd < 102. For the same Tfit and p ∼ 3 × 10−2 — 0.1 Torr, the films show 1.7 < E9Tauc < 2 eV, 10−3 < Σd < 10−1Scm−1 and σphd < 1. Films deposited using molybdenum and rhenium filaments at Tfil ≃ 1900 °C show E9Tauc ≃ 1.7 eV and σd ∼ σph ∼ 10−7Scm−1

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R. A., Amorphous Silicon Electronics, MRS Bulletin, 17 11, 70 (1992).Google Scholar
2. Curtins, H., Wyrsch, N., Faure, M. and Shah, A. V., Plasma Chem. and Plasma Proc., 7, 267 (1987).Google Scholar
3. Watanabe, T., Azuma, K., Nakatani, M., Suzuki, K., Sonobe, T. and Shimada, T., Jpn. J. Appl. Phys. 26, L1215 (1987).Google Scholar
4. Shibata, N., Fukuda, K., Ohtoshi, H., Hanna, J., Oda, S. and Shimizu, I., Mater. Res. Soc. Symp. Proc., 95, 225 (1987).Google Scholar
5. Wiesmann, H., Ghosh, A. K., McMahon, T. and Strongin, M., J. Appl. Phys. 50, 3752 (1979); U.S. Patents 4, 237, 150 (1980) and 4, 634, 605 (1987).Google Scholar
6. Matsumura, H., Jpn. J. Appl Phys. 25, L949 (1986).Google Scholar
7. Matsumura, H., J. Appl. Phys. 65 (11), 4396 (1989).Google Scholar
8. Doyle, J., Robertson, R., Lin, G. H., He, M. Z. and Gallagher, A., J. Appl Phys. 64 (5), 3215 (1988).Google Scholar
9. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S. and Balberg, I., J. Appl Phys. 69 (9), 6728 (1991).Google Scholar
10. Hata, N. and Wagner, S., J. Appl Phys. 72 (7), 2857 (1992).Google Scholar
11. Matsumura, H., Appl. Phys. Lett. 51 (11), 804 (1987).Google Scholar
12. Matsumura, H. Ihara, H., J. Appl. Phys. 64 (11), 6505 (1988).Google Scholar
13. Deshpande, S. V., Dupuie, J. L. and Gulari, E., Appl. Phys. Lett. 61 (12), 1420 (1992).Google Scholar
14. Matsumura, H., Jpn. Appl. Phys. 30, L1522 (1991).Google Scholar
15. Goodmann, A., Applied Optics, 17 2779, (1978).Google Scholar
16. Vanacek, M., Kocka, J., Strichlik, J., Kosicek, Z., Stika, O. and Triska, A., Sol. Energy Mater. 8, 411 (1983).Google Scholar
17. Watanabe, T., Azuma, K., Nakatani, M. and Shimada, T., Jpn. Appl. Phys. 29, L1419 (1990).Google Scholar
18. Wyrsch, N., Finger, F., McMahon, T.J., Vanacek, M., J. Non-Cryst. Solids, 137&138, 347 (1991).Google Scholar
19. Wang, N. and Wagner, S., private communication.Google Scholar
20. Fang, C. J., Gruntz, K. J., Ley, L., Cardona, M., Demond, F. J., Müller, G. and Kalbitzer, S., J. Non-Cryst. Solids 35&36, 255 (1980).Google Scholar