Skip to main content Accessibility help

High-Frequency Capacitance-Voltage Characteristics of Pecvd-Grown SiO2 Mis Structure on GaN and GaN/AL0.4Ga0.6N/GaN Heterostructure

  • P. Chen (a1), Y.G. Zhou (a1), H.M. Bu (a1), W.P. Li (a1), Z.Z. Chen (a1), B. Shen (a1), R. Zhang (a1) and Y.D. Zheng (a2)...


Metal-insulator-semiconductor structures are fabricated by depositing SiO2 films on an MOCVD-grown n-type GaN epitaxial layer and a GaN/Al0.4Ga0.6N/GaN double heterojunction. The SiO2 films are grown by plasma-enhanced chemical vapor deposition. High-frequency C-V characteristics show the agreement of the measured C-V curve of SiO2/n-GaN with an ideal curve in deep depletion and the very small hysteresis, which indicates that the interface traps concentration in the sample is low. However, for SiO2/GaN/Al0.4Ga0.6N/GaN, the measured C-V curves show a notable flat-band shift of about 9.2 V and a typical polarization hysteresis window. These show the influence of the polarization charges in this structure. The capacitance on SiO2/GaN/Al0.4Ga0.6N/GaN reaches a minimum value under around –5V bias. The saturation at a minimum value of the C-V curve indicates the presence of holes accumulation in the MIS structure. These results imply that the piezoelectric effect in GaN/Al0.4Ga0.6N/GaN play an important role for the formation of the p-channel.



Hide All
[1] Binari, S.C., Kryppa, W., Dietrich, H.B., et al., Solid-State Electron. 41, 1549 (1997).
[2] Sheppard, S.T., Doverspike, K., et al. IEEE Electr. Device. Lett. 20, 161 (1999).
[3] Chen, P., Zhang, R., Zhou, Y.G., Xie, S.Y., Luo, Z.Y., Chen, Z.Z., Li, W.P., and Zheng, Y.D., MRS Spring Meeting, T2.9 (2000).
[4] Sawada, M., Sawada, T., Yamagata, Y., Imai, K., Kumura, H., Yoshino, M., Iizuka, K., and Tomozawa, H., Proceedings of the Second International Conference on Nitride Semiconductors, Tokushima, 1997, p.482.
[5] Casey, H.C. Jr, Fountain, G.G., Alley, R.G., et al. Appl.Phys.Lett, 68, 1850 (1996).
[6] Arulkumaran, S., Egawa, T., Ishikawa, H., et al. Appl.Phys.Lett, 73, 309 (1998).
[7] Bernardini, F., Fiorentit, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).
[8] Maeda, N., Nishida, T., Kobayashi, N., et al. Appl. Phys. Lett. 73, 1856 (1998).
[9] Nicollian, E.H., and Brews, J.R., MOS(Metal Oxide Semiconductor) Physics and Technology, (Wiley, New York, 1986), p.96.
[10] Grove, A.S., Deal, B.E., Snow, E.H. and Sah, C.T., Solid State Electron. 8, 145 (1965).
[11] Ponce, F.A., Walle, C.G. Van de, and Northrup, J.E., Phys. Rev. B, 53, 1 (1996).
[12] Khan, M.A., Hu, X., Tarakij, A., Sumin, G., Yang, J., Gaska, R. and Shur, M.S., Appl. Phys. Lett. 77, 1339 (2000)
[13] Khan, M.A., Hu, X., Sumin, G., Lunev, A., Yang, J., Gaska, R. and Shur, M.S., IEEE Electron Device Letters. 21, 63 (2000)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed