Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T10:55:27.553Z Has data issue: false hasContentIssue false

High Yield Conversion of Carbon Nanotubes to Nanostraws at Mild Conditions

Published online by Cambridge University Press:  15 February 2011

Kuo Chu Hwang*
Affiliation:
Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R. O. C
Get access

Abstract

Several oxidants were examined for their abilities in opening carbon nanotube end caps. Up to 91% of carbon nanotubes were found to have at least one open end when treated by 0.2 M KMnO4/ 10% H2SO4 or 0.2 M KMnO4/ 0.2 M CrO3 aqueous solution at 100° C, 90 min. That is, σ82% of carbon nanotubes was converted to “nanostraws”. The morphologies of the processed carbon nanotubes reflect the relative strength of these oxidants. The mechanism of carbon nanotube end cap opening processes will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Ebbesen, T. W. and Ajayan, P. M., Nature 358, 220 (1992).Google Scholar
3. Mintmire, J. W., Dunlap, B. I., White, C. T., Phys. Rev. Lett. 68, 631 (1992);Google Scholar
Hamada, N., Sawada, S. I., Oskiyama, A., Phys. Rev. Lett. 68, 1579 (1992);Google Scholar
Saito, R., Fujita, M., Dresselhaus, G., dresselhaus, M. S., Appl. Phys. Lett. 60, 2204 (1992).Google Scholar
4. Ball, P., Nature 361, 297 (1993).Google Scholar
5. Ajayan, P. M. and Iijima, S., Nature 361, 333 (1993).Google Scholar
6. Tsang, S. C., Harris, P. J. F. and Green, M. L. H., Nature 362, 520 (1993).Google Scholar
7. Ajayan, P. M., Ebbesen, T. W., Ichiharhi, T., Iijima, S., Tanigaki, K. and Hirua, H., Nature 362, 522 (1993).Google Scholar
8. Iijima, S., Nature 354, 56 (1991);Google Scholar
Iijima, S., Ichihashi, T., Ando, Y., Nature, 356, 776 (1992).Google Scholar
9. Waters, W. A., Q. Rev. Chem. Soc. 12, 277 (1958).Google Scholar
10. Sklarz, B., Q. Rev. Chem. Soc. 21, 3 (1967);Google Scholar
Vorbrueggen, H. and Djerassi, C., J. Am. Chem. Soc. 84, 2990 (1962); F. D. Gunstone and P. J. Sykes, J. Chem. Soc. 1962, 3058.Google Scholar
11. Henry, J. R. and Weinreb, S. M., J. Org. Chem. 58, 4745 (1993);Google Scholar
Uskokovic, M., Gut, M., Trachtenderg, E. N., Klyne, W. and Dorfman, R. I., J. Am. Chem. Soc. 82, 4965 (1960);Google Scholar
Schroder, M., Chem. Rev. 80, 187 (1980).Google Scholar
12. Ohloff, G. and Giersch, W., Angew. Chem. Int. Ed. Engl. 12, 401 (1973).Google Scholar
13. Tavres, D. F. and Borger, J. P., Canad. J. Chem. 44, 1323 (1966);Google Scholar
Rocek, J. and Westheimer, F. H., J. Am. Chem. Soc. 84, 2241 (1962).Google Scholar
14. Hwang, K. C., J. Chem. Soc. Chem. Comm. (in press).Google Scholar
15. Dujardin, E., Ebbesen, T. W., Hiura, H. and Tanigaki, K., Science 265, 1850 (1994).Google Scholar
16. Haddon, R. C. Acc. Chem. Soc. 21, 243 (1988); Science 261, 1545 (1993).Google Scholar
17. Hawkins, J. M., Meyer, A., Solow, M. A., J. Am. Chem. Soc. 115, 7499 (1993);Google Scholar
Hawkins, J. M., Nambu, M., Meyer, A., J. Am. Chem. Soc. 116, 7642 (1994).Google Scholar