Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T18:56:42.022Z Has data issue: false hasContentIssue false

High Temperature X-Ray Diffraction in Transmission Under Controlled Environment

Published online by Cambridge University Press:  10 February 2011

L. Margulies
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011, hanuman@iastate.edu
M. J. Kramer
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011
J. J. Williams
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011
E. M. Deters
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011
R. W. McCallum
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011
D. R. Haeffner
Affiliation:
APS, Argonne National Laboratory, Argonne, II 60439
J. C. Lang
Affiliation:
APS, Argonne National Laboratory, Argonne, II 60439
S. Kycia
Affiliation:
CHESS, Cornell University, Ithaca, NY 14853
A. I. Goldman
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011
Get access

Abstract

A compact tube furnace has been developed for high temperature X-ray diffraction studies using high energy synchrotron radiation. The furnace design has a low absorption path in transmission yet allows for a high degree of control of the sample atmosphere and a minimal temperature gradient across the sample. The design allows for a maximum temperature of 1500°C with a variety of atmospheres including inert, reducing, and oxidizing. Preliminary results obtained at the SRI-CAT I-ID undulator line (60keV) at the APS facility and the A2 24 pole wiggler line (45keV) at CHESS on the Ti5Si3Z5 (Z = C, N, O) system will be presented to demonstrate the feasibility of this approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shastri, S. D., Dejus, R. J., and Haeffner, D. R., J. Synchro. Rad., Vol 5, pp. 6771 (1998).Google Scholar
2. Badyal, Y. S., Saboungi, M. L., Price, D. L., Haeffner, D. R., and Shastri, S. D., Europhys. Lett. 39, pp. 1924 (1997).Google Scholar
3. Egami, T., Billinge, S. J. L., Kycia, S., Dmowski, W., and Eberhardt, A. S., Synchrotron Radiation Instrumentation: Tenth US National Conference, edited by Fontes, E., 1997, pp. 209213.Google Scholar
4. Cox, D. E., Hastings, J. B., Thomlinson, W., and Prewitt, C. T., Nucl. Instrum. Methods 208, pp. 573578 (1983).Google Scholar
5. Thermophysical Properties of Matter, Vol.13: Thermal Expansion, Non-Metallic Solids, edited by Touloukian, Y. S. (Plenum Press, New York, 1977), pp. 288289.Google Scholar
6. Garcia, E. and Corbett, J. D., Inorgan. Chem. 27, p. 2353 (1988).Google Scholar
7. Thom, A. J., Meyer, M. K., Kim, Y., and Akinc, M. in Processing and Fabrication of Advanced Materials for High-Temperature Applications-III, edited by Srivatsan, T. S. and Ravi, V. A. (Min. Met. Mater. Soc. Symp. Proc., 1994) pp. 413438.Google Scholar
8. Evans, A. G., Acta. Metall. 26, pp. 18451853 (1978).Google Scholar
9. Rice, R. W. and Pohanka, R. C, J. Am. Ceram. Soc. 62, pp. 559563 (1979).Google Scholar