Skip to main content Accessibility help

High Temperature Plasmonic Photonic Crystal MEMS Emitter

  • Irina Puscasu (a1), Edward Johnson (a2), Andrew Taylor (a3), Brent Schell (a4), William Schaich (a5) and Rana Biswas (a6)...


We describe a new class of plasmonic photonic crystal emitters integrated into a MEMS platform for high temperature-intensity, high speed, and high efficiency tuned emitting and sensing applications in the infrared. We exploit 2D organized metallo-dielectric surface structures for angular and spectral control of reflection, absorption and emission from surfaces in the infrared. We have built a FDTD model that incorporates complex frequency dependent properties and provides quantitative agreement with measured spectral data. High temperature materials and special fabrication techniques allow high temperature operation. This technology offers new solutions for spectral control with application in thermophotovoltaic (TPV) energy conversion. Built on a MEMS platform, for thermal isolation from the environment, these devices also modulate at high speed, opening new applications in spectroscopy, infrared imaging, and signaling. Demonstrated wafer-level vacuum sealing improves the wall plug efficiency dramatically. We describe device architecture and fabrication considerations for plasmonic photonic crystal structures which simultaneously act as emitters and sensors in a defined narrow waveband radiation. In particular, this combined capability opens new avenues for research for vital commercial applications such as environmental protection, household safety, bio-hazardous material identification, meteorology and industrial environments.



Hide All
i Puscasu, I. Johnson, E.A. Pralle, M.U., McNeal, M.P. Daly, J.T. and Greenwald, A.C. Proc. SPIE 5515, 58 (2004)
ii Chen, D.L. Soljacic, M. and Joannopoulos, J.D. Phys. Rev. E 74, 016609 (2006)
iii Battula, A. and Chen, S.C. Phys. Rev. B 74, 245407 (2006)
iv Puscasu, I. Pralle, M. McNeal, M. Daly, J. Greenwald, A. Johnson, E. Biswas, R. and Ding, C. G.. J. Appl. Phys., 98, 13531 (2005).
v Puscasu, I. Schaich, W., Appl. Phys. Lett 92, 233102 (2008)
vi Puscasu, I. Pralle, M. U. McNeal, M. P. Moelders, N. Last, L. Ho, W. Greenwald, A. C. Daly, J. T. Johnson, E. A. El-Kady, I., Biswas, R. MRS Symp. Proc. v.722, paper L3.4, 2002.
vii Florescu, M. Lee, H. Puscasu, I., Pralle, M. Florescu, L., Ting, D.Z. Downling, J.P., Solar energy materials and solar cells, 91(2007), 1599
viii Sirtori, C. Kruck, P. Barbieri, S. Collot, P. Nagle, J. Beck, M. Faist, J. and Oesterle, U. Appl. Phys. Lett. 73, 3486 (1998)
ix Benken, C. von, Sensors, 15 (10), p.49 (1998).
x US patent 5,838,016, 1998.
xi Blatchley, C. C. Johnson, E. A. Pu, Y. K. Benken, C. Von, Proc., SPIE 1753, 317 (1992).
xii Daly, J. T. Johnson, E. A. Moelders, N. McNeal, M. Pralle, M. Greenwald, A. C. Ho, B. Puscasu, I. George, T. Choi, D. S. SPIE Proceedings on Environmental and Industrial Sensing, Vol. #4576, pp. 4955, 2001.
xiii Puscasu, I.Photonic crystals shrink infrared optical sensors,” OE magazine, May 2003
xiv Parker, Barry, “The Progress of Port Security”, Security Technology & Design, April 2004,
xv Pralle, M.; Puscasu, I.; Johnson, E.; Loges, P.; Melnyk, J. SPIE Proceedings Vol. 5780, 18, 2005



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed