Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-14T15:49:33.008Z Has data issue: false hasContentIssue false

High Resolution Moire Imaging of Small Precipitates

Published online by Cambridge University Press:  25 February 2011

W. Kesternich*
Affiliation:
Kernforschungsanlage Jülich, Institut für Festkörperforschung, Postfach 1913, D-5170 Jülich, Fed. Rep. of Germany - Association Euratom
Get access

Abstract

Small precipitates of high lattice mismatch with respect to the matrix may be investigated by high resolution and high contrast moiré fringe images in TEM. One group of such precipitates are the MX-type precipitates with M = Ti, V, Zr, Nb, Hf, Ta, and X = C,N that form in austenitic steels. The usefulness of moiré images for the investigation of these MX-type precipitates is demonstrated and compared to other electron imaging and diffraction methods. The moiré technique has been used to study (a) nucleation and growth of precipitates, (b) the evolution of dual precipitate structures at grain boundaries, (c) morphology and faceting of small precipitates (∼10 nm diameter), (d) lattice parameter differences due to variation in precipitate chemical composition, (e) interaction of precipitates with dislocations, (f) gas atom trapping at precipitates, and (g) irradiation induced precipitate nucleation at point defect clusters.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kesternich, W., Electron Microscopy (1980) Vol.1, 188.Google Scholar
2. Rosenberg, S. J. and Darr, J. H., Trans. ASM 41 (1949) 1261.Google Scholar
3. Williams, T. M. and Harries, D. R., Proc. Creep Strength in Steel and High-Temperature Alloys (1974) 152.Google Scholar
4. Kesterhich, W., J. Nucl. Mater. 127 (1985) 153.Google Scholar
5. Bloom, E. E., Stiegler, J. O., Rowcliffe, A. F., and Leitnaker, J. M., Scripta Met. 10 (1976) 303.CrossRefGoogle Scholar
6. Silcock, J. M. and Tunstall, W. J., Phil. Mag. 10 (1964) 361; further references in Ref. [7].CrossRefGoogle Scholar
7. Kesternich, W., Phil. Mag. (1985) in press.Google Scholar
8. Kesternich, W., Acta Met. (1985) in press.Google Scholar
9. Goldschmidt, H. J., Interstitial Alloys, Butterworth, London (1969) 92.Google Scholar
10. Trinkaus, H., Rad. Effects 78 (1983) 189.Google Scholar
11. Lee, E. H., Packan, N. H., and Mansur, L. K., J. Nucl. Mater. 117 (1983) 123.Google Scholar
12. Kesternich, W., ANS Trans. 33 (1979) 291.Google Scholar
13. Maziasz, P. J., Proc. Symp. Irradiation Effects on Phase Stability TMS-AIME (1981) 477.Google Scholar
14. Kesternich, W. and Rothaut, J., J. Nucl. Mater. 103&104 (1981) 845.CrossRefGoogle Scholar
15. Williams, T. M., Arkell, D. R., and Eyre, B. L., J. Nucl. Mater. 68 (1977) 69.Google Scholar
16. Thiele, B., Thesis, Technical University Aachen (1984).Google Scholar