Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T12:39:45.732Z Has data issue: false hasContentIssue false

High Pressure Studies of Polyaromatic Molecilar Crystals: Optical and Electronic Properties from first Principles

Published online by Cambridge University Press:  21 March 2011

Kerstom Weinmeier
Affiliation:
Inst. for Theoretical Physics, University of Graz, A-8010 Graz, Austria
Peter Puschning
Affiliation:
Inst. for Theoretical Physics, University of Graz, A-8010 Graz, Austria
Claudia Ambrosch-Drax
Affiliation:
Inst. for Theoretical Physics, University of Graz, A-8010 Graz, Austria
Georg Heimel
Affiliation:
Inst. for Solid State Physics. Graz University of Technology, A-8010 Graz, Austria
Egbert Zojer
Affiliation:
Inst. for Solid State Physics. Graz University of Technology, A-8010 Graz, Austria
Roland Resel
Affiliation:
Inst. for Solid State Physics. Graz University of Technology, A-8010 Graz, Austria
Get access

Extract

Molecular crystals based on conjugated aromatic molecules have attracted a lot of interest, since their combined electrical and optical properties enable them many technical applicatins. The optical features and the anisotropic electron mobility strongly depend on the crystalline structure of such materials, which itself is determined by the inter-and intramolecular interactions. We investigate those interactions by performing full potential linearized augmented plane wave (FP-LAPW) band structure calculcations accompanied by X-ray [powder diffraction experiments imder hydrpstatoc [ressure up to 50 κbar. In this work we focus on the compounds anthracene and para-terphenyl and report their internal geometry, electronic structure and optical spectra as a functionof pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schön, J.H., Kloc, Ch., Bucher, E., and Batalogg, B.,Nature 403, 408 (2000)Google Scholar
2. Schön, J.H., Berg, S., Kloc, Ch., and Batalogg, B., Science 287, 1022 (2000); J.H. Schön, Ch.Kloc, A. Dodobalapur, and B. Batalogg, Science 289, 599 (2000).Google Scholar
3. Schön, J.H., Kloc, Ch., and Batalogg, B., Science 288, 2338 (2000); Nature 406, 703 (2000).Google Scholar
4. Heimel, G., Zojer, E., Resel, R., Puschking, P., Weinmier, K., and Ambrosch-Draxl, C., presented at this conference.Google Scholar
5. Puschking, P., and Ambrosch-Draxl, C., Heimel, G., Zojer, E., Resel, R., Leising, G., Kriechbaum, M., and Graupner, W., Synethetic Metals 116, 327 (2001).Google Scholar
6. Mason, R., Acta Cryst. 17, 547 (1964).Google Scholar
7. Hohenberg, P. and Kohn, W., Phys.Rev. 136(B), B864 (1964); W. Kohn and L.S. Sham, Phys.Rev. 140(4A), A1133 (1965).Google Scholar
8. Blaha, P., Schwarz, K. and Luitz, J., WIEN97. A Full Potential Linerarized Augumented Plane Wave Package for Calculating Crystal Properties. ed. by Karlheinz Schwarz, Techn. Universtät Wien, Austria, (1999) ISBN 3-9501031-0-4.Google Scholar
9. Sjöstedt, E., Nordström, L., and Singh, D.J., Solid state Commun. 114, 15 (2000)Google Scholar
10. Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett. 45(7), 566 (1980).Google Scholar
11. Perdew, J.P., Burke, S., and Ernzerhof, M., Phys. Rev. Lett. 77(18), 3865 (1996).Google Scholar
12. Rietveld, H.M., Maslen, E.N., and Clews, C.J.B., Acta Cryst. 26, 693 (1970).Google Scholar
13. Blöchl, P.E., Jopsen, O., and Anderson, O.K., Phys. Rev. B 49, 16223 (1994)Google Scholar
14. Silinsh, E.A. and Capek, V., Organic Moecular Crystals, AIP New York (1994).Google Scholar
15. Niko, A., Meghdadi, F., Ambrosch-Draxl, C., Vogl, P., and Leising, G., Synethetic Metals 76, 177 (1996)Google Scholar