Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T18:57:13.283Z Has data issue: false hasContentIssue false

High Pressure - High Temperature Synthesis of Low-Compressibility Cubic C3N4

Published online by Cambridge University Press:  10 February 2011

Jeffrey H. Nguyen
Affiliation:
Physics and Space Technology Directorate, P. O. Box 808, L-174, Lawrence Livermore National Laboratory, Livermore, CA 94551, nguyen29@llnl.gov Department of Geology and Geophysics, University of California, Berkeley, CA 94720.
Wendel A. Caldwell
Affiliation:
Department of Geology and Geophysics, University of California, Berkeley, CA 94720.
Laura Robin Benedetti
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720.
Michael B. Kruger
Affiliation:
Department of Physics, University of Missouri, Kansas City, MO 64111.
Raymond Jeanloz
Affiliation:
Department of Geology and Geophysics, University of California, Berkeley, CA 94720.
Get access

Abstract

We report the synthesis of a crystalline carbon-nitrogen compound having a zero-pressure bulk modulus of ∼ 249 GPa. Its crystal-structural and compressional properties are in good accord with those predicted theoretically by Teter and Hemley for a cubic C3N4 phase. Experimentally, this phase is synthesized at pressures and temperatures above 18 GPa and 2000 K. It decomposes upon pressure release below 14 GPa, and may offer a route to synthesizing other incompressible carbon nitride phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teter, D. M. and Hemley, R. J., Science 271, 53 (1996).Google Scholar
2. Badding, J. V., Parker, L. J., and Nesting, D. C., J. Solid State Chem. 117, 229 (1995).Google Scholar
3. Liu, A. Y. and Cohen, M. L., Science 255, 841 ( 1989).Google Scholar
4. Liu, A. Y. and Cohen, M. L., Phys. Rev. B 41, 10727 (1990).Google Scholar
5. Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).Google Scholar
6. Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. Y., and Wu, I. W., Phys. Rev. B 49, 5034 (1994).Google Scholar
7. Yamamoto, K., Koga, Y., Yase, K., Fujiwara, S., and Kubota, M., Japn. J. Appl. Phys. Lett. 36, L230 (1997).Google Scholar
8. Cohen, M. L., Phys. Rev. B 32, 7988 (1985).Google Scholar
9. Nguyen, J. H., Kruger, M. B., and Jeanloz, R., Solid State Commun. 88, 719 (1993).Google Scholar
10. Nellis, W. J., Radousky, H. B., Hamilton, D. C., Mitchell, A. C., Holmes, N. C., Christianson, K. B., and van Thiel, M., J. Chem. Phys. 94, 2244 (1991).Google Scholar
11. Knittle, E., Kaner, R. B., Jeanloz, R., and Cohen, M. L., Phys. Rev. B 51, 12149 (1995).Google Scholar
12. Jeanloz, R. and Kavner, A., Phil Trans. Roy. Soc. Lond. A 354, 1279 (1996).Google Scholar
13. Nguyen, J. H. and Jeanloz, R., Rev. Sci. Instrum. 64, 3456 (1993).Google Scholar
14. C60 undergoes polymerization at a pressure less than 10 GPa and temperature less than 1000K,15 a range surpassed in the present study. Here, we find no evidence for a crystal structure composed of C60 balls, as its existence would have been detected by the presence of diffraction lines at large d-spacings.Google Scholar
15. Nunez-Regueiro, M., Marques, L., Hodeau, J.-L., Béthoux, O., and Perroux, M., Phys. Rev. Lett. 74, 278 (1995).Google Scholar
16. Birch, F., J. Geophys. Res. 83, 1257, 1978.Google Scholar