Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:05:04.325Z Has data issue: false hasContentIssue false

High Power 330 nm AlInGaN UV LEDs in the High Injection Regime

Published online by Cambridge University Press:  01 February 2011

M. Gherasimova
Affiliation:
Department of Electrical Engineering, Yale University, P.O. Box 208284, New Haven, CT 06520
J. Su
Affiliation:
Department of Electrical Engineering, Yale University, P.O. Box 208284, New Haven, CT 06520
G. Cui
Affiliation:
Department of Electrical Engineering, Yale University, P.O. Box 208284, New Haven, CT 06520
J. Han
Affiliation:
Department of Electrical Engineering, Yale University, P.O. Box 208284, New Haven, CT 06520
H. Peng
Affiliation:
Division of Engineering, Brown University, 182 Hope Street, Providence, RI 02912
E. Makarona
Affiliation:
Division of Engineering, Brown University, 182 Hope Street, Providence, RI 02912
Y. He
Affiliation:
Division of Engineering, Brown University, 182 Hope Street, Providence, RI 02912
Y.-K. Song
Affiliation:
Division of Engineering, Brown University, 182 Hope Street, Providence, RI 02912
A. V. Nurmikko
Affiliation:
Division of Engineering, Brown University, 182 Hope Street, Providence, RI 02912
Get access

Abstract

We report on the growth and testing of the light emitting diode structures incorporating quaternary AlInGaN active region with an emission wavelength of 330 nm. Small area circular devices were fabricated, yielding the output power of 110 μW measured with a bare-chip configuration in a high current injection regime (8 kA/cm2 for a 20 μm diameter device). Structural properties of the constituent epitaxial layers were evaluated by atomic force microscopy and transmission electron microscopy, resulting in the observation of two-dimensional growth morphologies of AlN and AlGaN, and the estimate of threading dislocation densities in the low 109 cm-2 range in the structures grown on sapphire substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishida, T., Kobayashi, N. and Ban, T., Appl. Phys. Lett. 82, 1 (2003).Google Scholar
2. Chitnis, A., Zhang, J. P., Adivarahan, V., Shatalov, M., Wu, S., Pachipulusu, R., Mandavilli, V. and Khan, M. A., Appl. Phys. Lett. 82, 2565 (2003).Google Scholar
3. Zhu, T. G., Chowdhury, U., Denyszyn, J. C., Wong, M. M. and Dupuis, R. D., J. Cryst. Growth 248, 548 (2003).Google Scholar
4. Hanlon, A., Pattison, P. M., Kaeding, J. F., Sharma, R., Fini, P. and Nakamura, S., Jpn. J. Appl. Phys. 42, L628 (2003).Google Scholar
5. Yasan, A., McClintock, R., Mayes, K., Shiell, D., Gautero, L., Darvish, S. R., Kung, P. and Razeghi, M., Appl. Phys. Lett. 83, 4701 (2003).Google Scholar
6. Nikishin, S., Kuryatkov, V., Borisov, B., Kipshidze, G., Chandolu, A., Ahmad, I., Holtz, M. and Temkin, H., presented at the 8-th Wide-Bandgap III-Nitride Workshop, Richmond, VA, 2003.Google Scholar
7. Kim, K. H., Li, J., Jin, S. X., Lin, J. Y. and Jiang, H. X., Appl. Phys. Lett. 83, 566 (2003).Google Scholar
8. Ren, Z., Su, J., Gherasimova, M., Cui, G., Han, J., Peng, H., Makarona, E., He, Y., Song, Y.-K. and Nurmikko, A. V. (manuscript in preparation).Google Scholar
9. Han, J., Ng, T.-B., Biefeld, R. M., Crawford, M. H., and Follstaedt, D. M., Appl. Phys. Lett. 71, 3114 (1997).Google Scholar
10. Gherasimova, M., Wang, X.-L., Cui, G., Su, J., Han, J, Makarona, E., Peng, H., Song, Y.-K. and Nurmikko, A. V., Electronic Material Conference, June, 2003.Google Scholar
11. Heydig, B., Wu, X. H., Keller, S., Li, Y., Kapolnek, D., Keller, B. P., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett. 68, 643 (1996).Google Scholar
12. Jasinski, J., Liliental-Weber, Z., Paduano, Q. S. and Weyburne, D. W., Appl. Phys. Lett. 83, 2811 (2003).Google Scholar