Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T09:49:09.342Z Has data issue: false hasContentIssue false

High Performance Plastic Transistors With Printed Polyaniline Electrodes

Published online by Cambridge University Press:  15 February 2011

Michael Lefenfeld
Affiliation:
DuPont Central Research and Development, Wilmington, DE, U.S.A.
Graciela Blanchet
Affiliation:
DuPont Central Research and Development, Wilmington, DE, U.S.A.
John A. Rogers
Affiliation:
Departments of Materials Science and Engineering, Chemistry, Beckman Institute and Materials Research Laboratory, University of Illinois at Urbana/Champaign, Urbana, IL, U.S.A.
Get access

Abstract

This article describes the properties of transistors that use organic semiconductors deposited on top of conducting polymer electrodes patterned by thermal transfer printing onto thin plastic sheets. The polymer, dinonylnaphthalene sulfonic acid doped polyaniline (DNNSA-PANI), contains several weight percent of single walled carbon nanotubes (SWNT) to improve its conductivity. Pentacene serves as the p-type organic semiconductor. The good electrical performance of these devices derives directly from the low resistance contacts between the printed DNNSA-PANI/SWNT source/drain electrodes and the pentacene. The measurements presented here quantify the behavior of these contacts and provide some morphological evidence for their low resistance. The excellent characteristics of the transistors and the operational flexibility of the thermal transfer printing technique that is used to pattern them represent results that may be an important step for the development of means to build realistic flexible electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Drury, C.J., Mutsaers, C.M.J., Hart, C.M., Matters, M., Leeuw, D.M. de, Appl. Phys. Lett. 1998, 73, 108.Google Scholar
2. Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, M., Woo, E.P., Science 2000, 290, 2123.Google Scholar
3. Garnier, F., Hajlaouir, R., Yassar, A., Srivastava, P., Science 1994, 265, 1684.Google Scholar
4. Bao, Z., Feng, Y., Dodabalapur, A., Raju, V.R., Lovinger, A.J., Chem. Mater. 1997, 9, 1299.Google Scholar
5. Rogers, J.A., Bao, Z., Raju, V.R., Appl. Phys. Lett. 1998, 72, 2716.Google Scholar
6. Beh, W.S., Kim, I.T., Qin, D., Xia, Y.N. and GM, Whitesides, Adv. Mater. 1999, 11, 1038.Google Scholar
7. Behl, M., Seekamp, J., Zankovych, S., Torres, C.M.S., Zentel, R., Ahopelto, J., Adv. Mater. 2002, 14, 588.Google Scholar
8. Loo, Y.-L., Willett, R.W., Baldwin, K. and Rogers, J.A., Appl. Phys. Lett. 2002, 81, 562; Y.-L. Loo, R.W. Willett, K. Baldwin and J.A. Rogers, J. Amer. Chem. Soc. 2002, 124, 7654.Google Scholar
9. Kim, C., Shtein, M., Forrest, S.R., Appl. Phys. Lett. 2002, 80, 4051.Google Scholar
10. Kumar, A., Whitesides, G.M., Appl. Phys. Lett. 1993, 63, 2002.Google Scholar
11. Rogers, J.A., Bao, Z., Makhija, A., Adv. Mater. 1999, 11, 741.Google Scholar
12. Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H.E., KAmundson, ., Ewing, J., Drzaic, P., Proc. Nat. Acad. Sci. USA 2001, 98, 4835.Google Scholar
13. Blanchet, G., Loo, Y.-L., Rogers, J.A., Gao, F., Fincher, C.R., Appl. Phys. Lett., in press; G. Blanchet, F. Gao, C.R. Fincher, Appl. Phys. Lett., in press.Google Scholar
14. Bao, Z., Kuck, V., Rogers, J.A., Paczkowski, M.A., Adv. Func. Mater. 2002, 12, 526.Google Scholar
15. Kymissis, I., Dimitrakopoulos, D.C., Purushothaman, S., IEEE Trans. Electron Dev. 2001, 48, 1060.Google Scholar
16. Street, R.A., Salleo, A., Appl. Phys. Lett. 2002, 81, 2887.Google Scholar
17. Necliudov, P.V., Shur, M.S., Gundlach, D.J., Jackson, T.N., Solid-State Electronics 2003, 47, 259; H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C.D. Sheraw, J.A. Nichols, T.N. Jackson, ibid. 2003, 47, 297.Google Scholar
18. Zaumseil, J., Someya, T., Bao, Z., Loo, Y.-L., Cirelli, R., Rogers, J.A., Appl. Phys. Lett. 2002, in press; J. Zaumseil, K. Baldwin, J.A. Rogers, J. Appl. Phys., submitted.Google Scholar
19. Gundlach, D.J., Jia, L.L., Jackson, T.N., IEEE Electr. Dev. Lett. 2001, 22, 571.Google Scholar
20. Luan, S., Neudeck, G.W., J. Appl. Phys. 1992, 72, 766.Google Scholar