Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T10:16:17.267Z Has data issue: false hasContentIssue false

High κ Gate Dielectrics For Si And Compound Semiconductors By Molecular Beam Epitaxy

Published online by Cambridge University Press:  11 February 2011

J. Raynien Kwo
Affiliation:
Agere Systems 4E709A, Connell Four Drive, Berkeley Heights, NJ 07922
Minghwei Hong
Affiliation:
Agere Systems 4E709A, Connell Four Drive, Berkeley Heights, NJ 07922
Get access

Abstract

The ability of controlling the growth and interfaces of ultrathin dielectric films on Si and compound semiconductors by ultrahigh vacuum physical vapor deposition has led to comprehensive studies of gate stacks employing the high κ gate oxide Ga2O3(Gd2O3), and the rare earth oxides Gd2O3 and Y2O3. The epitaxy and the interfaces of Gd2O3 on GaAs, GaN, and Si were characterized with atomic precision, and show strong tendency to conform to the underlying substrate, thus providing insight into the fundamental mechanism for low interfacial state density and effective passivation of GaAs and GaN surfaces. These Gd2O3 and Y2O3 gate stacks of abrupt interfaces and controlled microstructures were employed as a model system to elucidate critical issues of materials integration in CMOS scaling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hong, M., Liu, C. T., Reese, H., and Kwo, J. in “Encyclopedia of Electrical and Electronics Engineering”, 19, 87100, Ed. by Webster, J. G., Published by John Wiley & Sons, New York, (1999).Google Scholar
2. Materials Research Bulletin, March 2002 issue, on “Alternative Gate Dielectric for Microelectronics”, Ed. by Wallace, R. M. and Wilk, G. D..Google Scholar
3. Wilk, G. D. et al, J. Appl. Phys. 89, 5243 (2001).Google Scholar
4. Hubbard, K.J., and Schlom, D.G., J. Mater. Res. 11, 2757 (1996).Google Scholar
5. Mckee, R.A., Walker, F.J., and Chrisholm, M.F., Phys. Rev. Lett. 81, 3014 (1998).Google Scholar
6. Hong, M., Passlack, M., Mannaerts, J.P., Kwo, J., Chu, S.N.G., Moriya, N., Hou, S.Y., and Fratello, V.J., J. Vac. Sci. Technol. B 14, 2297 (1996).Google Scholar
7. Passlack, M., Hong, M., Mannaerts, J. P., Kwo, J., Opila, R. L., Chu, S. N. G., Moriya, N., and Ren, F., IEEE Transaction of Electron Devices, 44, 214 (1997).Google Scholar
8. Ren, F., Hong, M., Hobson, W. S., Kuo, J. M., Lothian, J. R., Mannaerts, J. P., Kwo, J., Chen, Y. K., and Cho, A. Y., IEDM Technical Digest, 943 (1996), and also in Solid State Electronics, 41, 1751 (1997).Google Scholar
9. Hong, M., Kwo, J., Kortan, A. R., Mannaerts, J. P., and Sergent, A. M., Science, 283, 1897 (1999).Google Scholar
10. Kwo, J., Hong, M., Kortan, A. R., Queeney, K. L., Chabal, Y. J., Mannaerts, J. P., Boone, T., Krajewski, J. J., Sergent, A. M., and Rosamilia, J. M., Appl. Phys. Lett. 77, 130 (2000).Google Scholar
11. Kwo, J., Hong, M., Kortan, A. R., Queeney, K. L., Chabal, Y. J., Opila, R. L. Jr, Muller, D. A., Chu, S. N. G., Sapjeta, B. J., Lay, T. S., Mannaerts, J. P., Boone, T., Krautter, H. W., Krajewski, J. J., Sergent, A. M., and Rosamilia, J. M., J. Appl. Phys. 89, 3920, (2001).Google Scholar
12. Busch, B.W., Kwo, J., Hong, M., Mannaerts, J.P., and Sapjeta, B.J., Schulte, W.H., Garfunkel, E., and Gustafsson, T., Appl. Phys. Lett. 79, 2447 (2001).Google Scholar
13. Kwo, J., Hong, M., Busch, B., Muller, D. A., Chabal, Y. J., Kortan, A. R., Mannaerts, J. P., Yang, B., Ye, P., Gossmann, H., Sergent, A. M., Ng, K. K., Bude, J., Schulte, W. H., Garfunkel, E., and Gustafsson, T., to be published in J. Crystal Growth, (2002).Google Scholar
14. Hong, M., Kortan, A. R., Kwo, J., Mannaerts, J. P., Lee, C. M., and Chyi, J. I., in IEEE International Symposium on Compound Semiconductors, IEEE publication series 00 TH8498, 495 (2000).Google Scholar
15. Kwo, J., Murphy, D. W., Hong, M., Opila, R. L., Mannaerts, J. P., Masaitis, R. L., and Sergent, A. M., Appl. Phys. Lett. 75, 1116 (1999).Google Scholar
16. Hong, M., Lu, Z. H., Kwo, J., Kortan, A. R., Mannaerts, J. P., Krajewski, J. J., Hsieh, K. C., Chou, L. J., and Cheng, K. Y., Appl. Phys. Lett. 76, 312 (2000).Google Scholar
17. Kortan, A. R., Hong, M., Kwo, J., Mannaerts, J. P., Krajewski, J. J., Kopylov, N., Steiner, C., Bolliger, B., and Erbudak, M., J. Vac. Sci. Technol. B. 19, 1434 (2001).Google Scholar
18. Yacoby, Y., Sowwan, A. M., Stern, E., Cross, J. O., Brewe, D., Pindak, R., Pitney, J., Dufresne, E. M., and Clarke, R., Nature Materials 1, 99 (2002).Google Scholar
19. Sowwan, A. M., Yacoby, Y., Pitney, J., MacHarrie, R., Hong, M., Cross, J., Walko, D. A., Clarke, R., Pindak, R., Stern, E. A., Phys. Rev. B. 66, 205311 (2002).Google Scholar
20. Pauling, L., Z. Kristallogr, 69, 415 (1928).Google Scholar
21. Lay, T. S., Liu, W. D., Hong, M., Kwo, J., and Mannaerts, J. P., Electronics Letters, 37, 595 (2001).Google Scholar
22. Luo, B., Johnson, J. W., Kim, J., Mehandru, R. M., Ren, F., Gila, B. P., Onstine, A. H., Abernathy, C. R., and Pearton, S. J., Baca, A. G., Briggs, R. D., Shul, R. J., and Monier, C., Han, J., App. Phys. Lett. 80, 1661 (2002).Google Scholar
23. Hong, M., Kortan, A. R., Ng, H. M., Kwo, J., Chu, S. N. G., Mannaerts, J. P., Cho, A. Y., Lee, C. M., Chyi, J. I., and Anselm, K. A., 20th NA MBE October 1–3, 2001, J. Vac. Sci. Technol. B 20, 1274 (2002).Google Scholar