Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T21:29:39.128Z Has data issue: false hasContentIssue false

High Efficiency UV-Emission at 345 nm from InAlGaN Light-Emitting Diodes

Published online by Cambridge University Press:  21 March 2011

A. Kinoshita
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan Department of Chemical Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
H. Hirayama
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan
M. Ainoya
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan Department of Chemical Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
T. Yamabi
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan Department of Chemical Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
Y. Aoyagi
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan
Get access

Abstract

Optical and electrical properties of 340 nm-band bright UV-light emitting diodes (LEDs) were compared between In0.03Al0.20Ga0.77N and other active regions. Single peaked and high efficiency ultraviolet (UV) emission at 345 nm from In0.03Al0.20Ga0.77N LEDs is achieved under continuous current injection conditions. Any significant broadening and peak shift of the electroluminescence (EL) spectrum were not observed. We attribute such a good properties to using of high quality InAlGaN-quaternary active layer. The EL intensity of the InAlGaN quaternary-based LED showed more one order of magnitude higher intensity than that of AlGaN and GaN based LEDs. Additionally, The I-L characteristics of the InAlGaN quaternary-based LED showed a linearly increasing of intensity with increasing of injection current density, that is also observed for InGaN based LEDs. This shows the recombination efficiency of the InAlGaN-based LED is as much as that of InGaN based LEDs. From these results InAlGaN quaternary is expected to be a promising material for UV LEDs and LDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
2. Han, J., Crawford, M. H., Shul, R. J., Figiel, J. J., Banas, M., Zhang, L., Song, Y. K., Zhou, H., and Nurmikko, A. V., Appl. Phys. Lett. 73, 1688 (1998).Google Scholar
3. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett., 79, 711 (2001).Google Scholar
4. Iwaya, M., Terao, S., Sano, T., Takanami, S., Ukai, T., Kamiyama, S., Amano, H., and Akasaki, I., Phys. Satus Solidi A (to be published).Google Scholar
5. Kinoshita, A., Hirayama, H., Ainoya, M., Hirata, A. and Aoyagi, Y., Appl. Phys. Lett. 77, 175 (2000).Google Scholar
6. Zhang, J. P., Adivarahan, V., Wang, H. M., Fareed, Q., Kuokstis, E., Chitnis, A., Shatalov, M., Yang, J. W., Simin, G., Khan, M. A., Shur, M. and Gaska, R., Jpn. J. Appl. Phys., 40, L921 (2001).Google Scholar
7. Hirayama, H., Kinoshita, A., Yamabi, T., Enomoto, Y., Hirata, A., Araki, T., Nanishi, Y. and Aoyagi, Y., Appl. Phys. Lett., 80, 207 (2002).Google Scholar
8. Chichibu, S., Cohen, D. A., Mack, M. P., Abare, A. C., Kozodoy, P., Minsky, M., Fleischer, S., Keller, S., Bowers, J. E., Mishra, U. K., Coldren, L.A., Clarke, D.R., and DemBaars, S. P., Appl. Phys. Lett. 73, 496 (1998).Google Scholar
9. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
10. Kozodoy, P., Smorchkova, Y. P., Hansen, M., Xing, H., DenBaars, S. P., Mishra, U. K., Saxler, A. W., Perrin, R., and Mitchel, W. C., Appl. Phys. Lett. 75, 2444 (1999).Google Scholar
11. Kumakura, K. and Kobayashi, N., Jpn. J. Appl. Phys. 38, L1012 (1999).Google Scholar
12. Hirayama, H., Enomoto, Y., Kinoshita, A., Hirata, A., and Aoyagi, Y., MRS Internet J. Nitride Semicond. Res. 5S1, W11.35 (2000).Google Scholar
13. Iwai, S., Kinoshita, A., Hirayama, H., and Aoyagi, Y., Int. Workshop on Nitride Semicond. Nagoya, TA4-5 (2000).Google Scholar
14. Kinoshita, A., Hirayama, H., Ainoya, M., Yamabi, T., Hirata, A., and Aoyagi, Y., Mat. Res. Soc. Fall Meeting, G12.6 (2000).Google Scholar
15. Yamabi, T., Kinoshita, A., Hirayama, H., Ainoya, M., Hirata, A., Araki, T., Nanishi, Y. and Aoyagi, Y., Mat. Res. Soc. Fall Meeting, I3.42 (2001).Google Scholar