Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-02T06:47:13.291Z Has data issue: false hasContentIssue false

Hierarchically Structured Silica Monoliths

Published online by Cambridge University Press:  10 February 2011

Nicola Hüsing
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9 A-1060 Vienna, Austria, nhuesing@mail.zserv.tuwien.ac.at
Christina Raab
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9 A-1060 Vienna, Austria, nhuesing@mail.zserv.tuwien.ac.at
Viktoria Torma
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9 A-1060 Vienna, Austria, nhuesing@mail.zserv.tuwien.ac.at
Get access

Abstract

Large monoliths with periodic mesopores in a macroporous web-like network structure are prepared using a diol-modified silane as silica precursor and lyotropic liquid crystalline phases of surfactants in water as structure-directing agents. The surfactant concentration is varied from 5 to 40wt%. Highly porous materials are synthesized applying two different drying procedures: supercritical drying with CO2 or ethanol, in addition to ambient pressure drying including surfactant expulsion via silanisation treatments with trimethylchlorosilane or hexamethyl disilazane. The monolithic materials show a very unique macro- and mesostructure which is characterized by N2-sorption measurements, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yanagisawa, T., Shimizu, T., Kuroda, K., Kato, C., Bull. Chem. Soc. Jpn., 63, 988 (1990); C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature, 359, 710 (1992).Google Scholar
2 Huo, Q., Margolese, D.I., Stucky, G.D., Chem. Mater., 8, 1147 (1996).Google Scholar
3 Antochshuk, V., Jaroniec, M., Chem. Mater., 12, 2496 (2000).Google Scholar
4 Hüsing, N., Schubert, U., Angew. Chem. Int. Ed., 37, 22 (1998).Google Scholar
5 Attard, G.S., Glyde, J.C., Göltner, C.G., Nature, 378, 366 (1995); C.G. Göltner, S. Henke, M.C. Weisenberger, M. Antonietti, Angew. Chem. Int. Ed. Eng., 37, 613 (1998).Google Scholar
6 Anderson, M.T., Sawyer, P.S., Rieker, T., Microporous Mesoporous Mater., 20, 53 (1998).Google Scholar
7 Ishizuka, N., Minakuchi, H., Nakanishi, K., Soga, N., Tanaka, N.J., Chromatogr. A., 797, 133 (1998).Google Scholar
8 Sattler, K., Gradzielski, M., Mortensen, K., Hoffmann, H., Ber. Bunsenges. Phys. Chem., 102, 1544 (1998); K. Sattler, H. Hoffmann, Prog. Colloid Polym. Sci., 112, 40 (1999).Google Scholar
9 Kistler, S.S., Nature, 127, 741 (1931); J. Phys. Chem., 36, 52 (1932).Google Scholar
10 Smith, D.M., Stein, D., Anderson, J.M., Ackerman, W., J. Non-Cryst. Solids, 186, 104 (1995).Google Scholar
11 Antochshuk, V., Jaroniec, M., Chem.Commun., 2373 (1999).Google Scholar
12 Mehrotra, R.C., Narain, R.P., Indian J. Chem, 5, 444 (1966).Google Scholar